
International Journal of Innovation Scientific Research and Review

Vol. 05, Issue, 05, pp.4530-4534, May 2023

Available online at http://www.journalijisr.com

SJIF Impact Factor 2023: 6.599

Research Article

ISSN: 2582-6131

COMPARISON OF THE USE OF DYNAMIC PROGRAMMING ALGORITHM AND GENETIC
ALGORITHM IN SOLVING THE TRAVELLING SALESMAN PROBLEM

* Charisma Tubagus Setyobudhi

Department of Computer Science, Faculty of Technology and Engineering, DiponegoroUniversity,Jl. Prof. Soedharto SH, Tembalang, Semarang-Indonesia.

Received 19th March 2023; Accepted 20th April 2023; Published online 31st May 2023

ABSTRACT

Artificial Intelligence (AI) is a topic of great interest in research. One of the well-known problems is the TSP problem. The Traveling Salesman Problem (TSP) is
a classic problem that is quite difficult to find a solution to. TSP problems are included in the NP Hard Problem category. Currently, several solution approaches
have been found in the TSP. The well-known algorithms used for the solution approach are DP (Dynamic Programming) and GA (Genetic Algorithm). In this
paper, the author wants to discuss the performance differences between the two algorithms. In the end, the author argues which algorithm is suitable for the
TSP problem.

Keywords: AI, TSP, Dynamic Programming, Genetic Algorithm.

INTRODUCTION

The travelling salesman problem (TSP) is a classic problem for
solving graph problems. The TSP involves a salesman who has to
visit each city on the graph once before returning to the starting point,
where the travel costs incurred during the trip are the minimum [1].
The TSP problem is widely used in real-world cases, for example, in
the vehicle routing problem and railway travelling salesman
problem[2]. This TSP problem was found in 1930 by Irish
Mathematician, William Rowan Hamilton and British Mathematician
Thomas Kirkman. TSP has several application domains, including the
planning, logistics, and manufacturing of microchips. Hence, finding a
correct and efficient method for TSP is very important for researchers.

RELATED WORKS

Colony Optimization [3] algorithm, Particle Swarm Optimization [4],
Evolutionary Algorithm [5], Agent Based Evolutionary Search [6], VNS
Algorithm [7], Genetic Algorithm [8,17], Novel Hybrid Penguins
Search[9], Bee Colony [10,15], Genetic Annealing[11], Memetic
Hunting Search [12], Harmony Search [13], Simulated Annealing[14],
Reinforcement Learning on Genetic Algorithms [15] TSP is a complex
problem that is categorised as an NP Hard problem. The NP Hard
problem is a problem in which the algorithm to solve it can be derived
to become another algorithm that can solve the NP polynomial. In
addition to TSP, there are several other problems that can be
categorised as NP Hard, namely the subset sum, maximum clique
problem, minute colour problem, and longest path problem.

THEORETICAL BACKGROUND

Dynamic Programming

Dynamic Programming is an optimization technique in programming
when encountering a problem that can be solved recursively.

*Corresponding Author: Charisma Tubagus Setyobudhi,
Department of Computer Science, Faculty of Technology and Engineering,
Diponegoro University,Jl. Prof. Soedharto SH, Tembalang, Semarang-Indonesia.

In Dynamic Programming, when one encounters a sub-problem that
can be solved repeatedly, Dynamic Programming can be used. Every
time we solve a sub-problem in a bigger problem, we can store it in
an array so that when we need a solution to a sub-problem that has
been solved before we can retrieve the solution constantly,
O(1).There are two types of DP approach techniques in Dynamic
Programming:

1. Top Down (Memoization)

Using this technique, we first depart from the main problem and then
break it down into smaller sub-problems. Typically, a top-down
approach uses recursive techniques to solve this problem.

2. Bottom Up (Tabulation)

If we use this technique, we start with small problems first and then
accumulate them into larger ones. Typically, a bottom-up approach
uses regular iteration techniques to solve this problem.

Genetic Algorithm

Artificial Intelligence is a field in computer science that studies how
computers and machines act intelligently. There are many branches
of artificial intelligence, one of which is genetic algorithms. A genetic
Algorithm (GA) is an Artificial Intelligence method that is often used to
solve optimisation problems. Optimisation problems aim to find
optimal solutions from among other solutions. The goal of the genetic
algorithm is to find a solution from several possible solutions
generated through an iterative process [2]. The genetic algorithm is a
metaheuristic algorithm used to solve complex problems [3]. In
addition to genetic algorithms, optimisation problems can be solved
using dynamic programming and machine learning methods. Genetic
algorithms can generally be used because the method

Fig 1. Flowchart of Genetic Algorithm

1. Chromosome Representation
 In this stage, the solution is expressed in terms of chromosomes.

Chromosomes are the forerunners of the solution being sought.
The form of chromosome representation can use binary numbers,
decimal numbers or other numbers depending on the problem
being faced MembangkitkanPopulasi Awal

2. Calculating the value of Fitness
 The fitness value is the value of an individual that is used to

determine which individual is the strongest among other
individuals. This fitness value generally uses a formula based on
individual suitability to achieve the goals of the search process.

3. Selection
 During the selection stage, individuals with high fitness values

were selected and pressed.

4. Crossover
 At this stage, crossover or crossbreeding is the stage in which

two individuals are selected, and then the chromosomes are
exchanged to produce new individuals to be included in the
population.

5. Mutation
 Mutation is the stage where an individual's chromosome will be

changed (mutated) to produce a new individual

6. New Individual
 New individuals that have been produced in the previous stages

are then included in the population so that they will be processed
further in the process of finding solutions

PROPOSED METHODS

In this study, we present two techniques for solving the TSP: Dynamic
Programming and Genetic Algorithm. In each subsection, we
elaborate on the methods and algorithms used in each
implementation. Hence, we hope that the reader will understand the
mechanics and logical processes implemented using both
techniques.

Dynamic Programming

In the search for TSP solutions using Dynamic Programming
techniques, several methods or functions are implemented, namely,

1. findSolution()

public int findSolution(){
startTime = getCurrentTimeMillis();
 solution = doTSP(1,0);
endTime = getCurrentTimeMillis();
elapsedTime = endTime - startTime;
 return solution;
}

2. doTSP()
public int doTSP(int mask, int pos){
if(mask == VISITED_ALL)
 return graph[pos][0];
if(DP[mask][pos] != -1){
 return DP[mask][pos];
 }

ans = Integer.MAX_VALUE;

for(int city = 0; city < N; city++){
 iteration++;
if(graph[pos][city] > 0 && ((mask & (1 << city)) == 0)){
costPath = graph[pos][city] + doTSP(mask | (1 << city), city);
ans = min(costPath, ans);
 }
 }
 return (DP[mask][pos] = ans);
 }

Genetic Algorithm

Genome

To represent the genome in the genetic algorithm, the authors used a
class called SalesmanGenome. Inside SalesmanGenome, several
methods and functions have been used in genetic algorithms. The
first function is calculate Fitness()

public int calculateFitness(){
 fitness = 0;
currentCity = startingCity;
 for each (gene in genome) {
 fitness += travelPrices[currentCity][gene];
currentCity = gene;
 }
 fitness += travelPrices[genome.get(numberOfCities-2)]
[startingCity];
 return fitness;
 }

The second function used is randomSalesman()

private List<Integer>randomSalesman(){
[result = new ArrayList<Integer>();
for(int i=0; i<numberOfCities; i++) {
 if(i!=startingCity)
result.add(i);
 }
 shuffle(result);
 return result;
 }

And the last and not least important third function is compareTo()

International Journal of Innovation Scientific Research and Review, Vol. 05, Issue 05, pp.4530-4534 May 2023 4531

@Override
 public int compareTo(Object o) {
 genome = (SalesmanGenome) o;
if(this.fitness>genome.getFitness())
 return 1;
 else if(this.fitness<genome.getFitness())
 return -1;
 else
 return 0;
 }

SalesmanTSP

SalesmanTSP is the main class in which a genetic algorithm is used
to determine the optimal solution for the TSP. In this SalesmanTSP
class there are several main functions, namely: create

public
List<SalesmanGenome>createGeneration(List<SalesmanGenome>
population){
 generation = new ArrayList<>();
currentGenerationSize = 0;
while(currentGenerationSize<generationSize){
 parents = pickNRandomElements(population,2);
 children = crossover(parents);
children.set(0, mutate(children.get(0)));
children.set(1, mutate(children.get(1)));
generation.addAll(children);
currentGenerationSize+=2;
 }
 return generation;
 }

1. crossOver()

public List<SalesmanGenome>crossover(List<SalesmanGenome>
parents){
 // housekeeping
 random = new Random();
 breakpoint = random.nextInt(genomeSize);
 children = new ArrayList<>();

 // copy parental genomes - we copy so we wouldn't modify in
case they were
 // chosen to participate in crossover multiple times
 parent1Genome = new
ArrayList<>(parents.get(0).getGenome());
 parent2Genome = new
ArrayList<>(parents.get(1).getGenome());

 // creating child 1
for(int i = 0; i<breakpoint; i++){
newVal = parent2Genome.get(i);
 swap(parent1Genome,parent1Genome.indexOf(newVal),i);
 }
children.add(new
SalesmanGenome(parent1Genome,numberOfCities,travelPrices,start
ingCity));
 parent1Genome = parents.get(0).getGenome(); // reseting the
edited parent

 // creating child 2
for(int i = breakpoint; i<genomeSize; i++){
newVal = parent1Genome.get(i);
 swap(parent2Genome,parent2Genome.indexOf(newVal),i);

International Journal of Innovation Scientific Research and Review

SalesmanTSP is the main class in which a genetic algorithm is used
he TSP. In this SalesmanTSP

create Generation()

List<SalesmanGenome>createGeneration(List<SalesmanGenome>

parents = pickNRandomElements(population,2);

public List<SalesmanGenome>crossover(List<SalesmanGenome>

we copy so we wouldn't modify in

// chosen to participate in crossover multiple times
parent1Genome = new

parent2Genome = new

swap(parent1Genome,parent1Genome.indexOf(newVal),i);

SalesmanGenome(parent1Genome,numberOfCities,travelPrices,start

parent1Genome = parents.get(0).getGenome(); // reseting the

swap(parent2Genome,parent2Genome.indexOf(newVal),i);

 }
children.add(new
SalesmanGenome(parent2Genome,numberOfCities,travelPrices,start
ingCity));
 return children;
 }

2. mutate()

public SalesmanGenomemutate(SalesmanGenome
 random = new Random();
 mutate = random.nextFloat();
 if(mutate<mutationRate) {
 genome = salesman.getGenome();
swap(genome, random.nextInt(genomeSize),
random.nextInt(genomeSize));
 return new SalesmanGenome(genome, numberOfCities,
travelPrices, startingCity);
 }
 return salesman;
 }

3. optimize()

public SalesmanGenomeoptimize(){
 population = initialPopulation();
globalBestGenome = population.get

for(int i=0; i<maxIterations; i++){
 iteration++;
 selected = selection(population);
 population = createGeneration(selected);
globalBestGenome = min(population);

if(globalBestGenome.getFitness() <= targetFitness)
 break;
 }
 return globalBestGenome;
 }

EXPERIMENTAL RESULT

The experiment was conducted using four test case graphs.
of these, we attempted to execute both algorithms to determine the
TSP length. Four graphs are presented below.

Figure 2. Case 1 of TSP Problem

International Journal of Innovation Scientific Research and Review, Vol. 05, Issue 05, pp.4530-4534 May 2023

SalesmanGenome(parent2Genome,numberOfCities,travelPrices,start

public SalesmanGenomemutate(SalesmanGenome salesman){

genome = salesman.getGenome();
swap(genome, random.nextInt(genomeSize),

return new SalesmanGenome(genome, numberOfCities,

public SalesmanGenomeoptimize(){
population = initialPopulation();

globalBestGenome = population.get(0);

selected = selection(population);
population = createGeneration(selected);

globalBestGenome = min(population);

if(globalBestGenome.getFitness() <= targetFitness)

EXPERIMENTAL RESULT

The experiment was conducted using four test case graphs. For each
of these, we attempted to execute both algorithms to determine the

presented below.

Case 1 of TSP Problem

3 4532

Figure 3. Case 2 of TSP Problem

Figure 4. Case 3 of TSP Problem

Figure 5. Case 4 of TSP Problem

The results of the experiments are listed in the following table.

Table 1. Comparison Table of Result

Case Graph Iteration and Elapsed Time

Dynamic
Programming

AlgoritmaGenetika

1 Graph:
0 20 42 25
20 0 30 34
42 30 0 10
25 34 10 0

Length: 85
Iteration: 40
Elapsed
Time(ms):0

Length: 85
Iteration: 20401
Elapsed Time(ms):259

2 Graph:
0 29 64 79 48
29 0 5 37 90
64 5 0 31 79
79 37 31 0 23
48 90 79 23 0

Length: 136
Iteration:145
Elapsed
Time(ms):0

Length: 136
Iteration: 22901
Elapsed Time(ms):
218

3 Graph:
0 47 86 30 47 96

Length:233
Iteration : 456

Length:233
Iteration:25401

International Journal of Innovation Scientific Research and Review

Case 2 of TSP Problem

Case 3 of TSP Problem

Case 4 of TSP Problem

The results of the experiments are listed in the following table.

Result

Iteration and Elapsed Time

AlgoritmaGenetika

Length: 85
Iteration: 20401
Elapsed Time(ms):259

Length: 136
Iteration: 22901
Elapsed Time(ms):
218

Length:233
Iteration:25401

47 0 27 96 56 37
86 27 0 32 99 73
30 96 32 0 79 95
47 56 99 79 0 60
96 37 73 95 60 0

Elapsed Time(ms):
0

4 Graph:
0 53 24 17 51 43 3
53 0 64 48 6 74 56
24 64 0 76 20 91
41
17 48 76 0 61 3 89
51 6 20 61 0 22 31
43 74 91 3 22 0 9
3 56 41 89 31 9 0

Length:113
Iteration:1309
Elapsed
Time(ms):0

RESULT AND ANALYSIS

The test results show that the two algorithms, dynamic programming
and genetic algorithms, can produce an optimum solution.
the graph size increases, the genetic algorithm produces an uncertain
result. This is because genetic algorithms contain elements of
randomness in generating populations and their mutations. The
genetic algorithm can only produce a cost path that is close to the
actual solution. In addition, genetic algorithms tend to take longer in
the search process than in dynamic programming.
the number of iterations, and the time required is
required for dynamic programming.

CONCLUSION

In conclusion, dynamic programming algorithms are better used for
TSP cases than genetic algorithms. Although the genetic algorithm is
much more intuitive to implement than the dynamic programmi
technique, the performance of dynamic programming outperforms
that of the genetic algorithm. Depending on the implementation, the
genetic algorithm might perform similarly performance than the
dynamic programming.

ACKNOWLEDGMENT

The authors would like to thank the people who supported this study
mentally and financially.

REFERENCES

[1] Zaeri, M.S., Shahrabi, J, Pariazar, M, Morabbi, “A. A combined

spatial cluster analysis - travelling salesman problem approach
in location-routing problem: A case

[2] Hu, Bin, Raidl, Gunther R. “Solving the Railway Traveling
Salesman Problem via a Transformation into the Classical
Travelling Salesman Problem”. 2008. IEEE

[3] Cai, and Zhaoquan. “Multi
Optimization for Traveling Salesman Problems”.2008. IEEE

[4] Song, Weitang, Zang, Shumei. “A novel adaptive particle swarm
optimization to solve traveling salesman problem”.2009. IEEE

[5] Wang, Xuan, Zhang, GhanNian, Li, Yuan
adaptive particle swarm optimization to solve traveling
salesman problem”. 2009. Springer.

[6] Da Zhi, Wang., Xin, Liu Shi. “An Agent
Search for Dynamic Travelling Salesman Problem”. 2010. IEEE

[7] Piriyaniti, Ittiporn, Pongchairerks, Pisut. “Novel VNS
on Asymmetric Travelling Salesman Problem”.2010. IEEE

International Journal of Innovation Scientific Research and Review, Vol. 05, Issue 05, pp.4530-4534 May 2023

Elapsed Time(ms): Elapsed Time(ms):256

Length:113
Iteration:1309
Elapsed
Time(ms):0

Length:113*
Iteration: 27901
Elapsed Time(ms):
196

The test results show that the two algorithms, dynamic programming
algorithms, can produce an optimum solution. However, if

the graph size increases, the genetic algorithm produces an uncertain
result. This is because genetic algorithms contain elements of
randomness in generating populations and their mutations. The
genetic algorithm can only produce a cost path that is close to the

In addition, genetic algorithms tend to take longer in
the search process than in dynamic programming. This is shown by
the number of iterations, and the time required is more than that
required for dynamic programming.

In conclusion, dynamic programming algorithms are better used for
TSP cases than genetic algorithms. Although the genetic algorithm is
much more intuitive to implement than the dynamic programming
technique, the performance of dynamic programming outperforms

Depending on the implementation, the
genetic algorithm might perform similarly performance than the

to thank the people who supported this study

Zaeri, M.S., Shahrabi, J, Pariazar, M, Morabbi, “A. A combined
travelling salesman problem approach

routing problem: A case study in Iran”. 2007 IEEE.
Hu, Bin, Raidl, Gunther R. “Solving the Railway Traveling
Salesman Problem via a Transformation into the Classical
Travelling Salesman Problem”. 2008. IEEE
Cai, and Zhaoquan. “Multi-direction Searching Ant Colony

zation for Traveling Salesman Problems”.2008. IEEE
Song, Weitang, Zang, Shumei. “A novel adaptive particle swarm
optimization to solve traveling salesman problem”.2009. IEEE
Wang, Xuan, Zhang, GhanNian, Li, Yuan-xiang. “A novel

swarm optimization to solve traveling
salesman problem”. 2009. Springer.
Da Zhi, Wang., Xin, Liu Shi. “An Agent-based Evolutionary
Search for Dynamic Travelling Salesman Problem”. 2010. IEEE
Piriyaniti, Ittiporn, Pongchairerks, Pisut. “Novel VNS Algorithms
on Asymmetric Travelling Salesman Problem”.2010. IEEE

3 4533

[8] Rai, Kartik., Madan, Lokesh., Anand, Kislay. “Research Paper
on Travelling Salesman Problem And it’s Solution Using Genetic
Algorithm”. 2014. IJIRT Volume 1 Issue 11

[9] Mzili, Ilyass, Bouzidi, and Morad. “A novel hybrid penguins
search optimization algorithm to solve travelling salesman
problem”.2015.IEEE

[10] Bai, Qiuying., Li, Giuzhi., Sun, Qiheng. “A novel hybrid penguins
search optimization algorithm to solve travelling salesman
problem”.2015. 8th International Conference on BioMedical
Engineering and Informatics.

[11] Chen, Muhao., Gong, Chen., Li, Xialong., Yu, Zongxin.
“Research on Solving Traveling Salesman Problem Based on
Virtual Instrument Technology and Genetic Annealing
Algorithm”.2015.IEEE

[12] Agharghor, Amine., Riffi, Mohammed Essaid., Chebihi, Faycal.
“A Memetic Hunting Search Algorithm for the Travelling
Salesman Problem”.2016. IEEE

[13] Tongchan, Tanapat, Pornsing, Choosak, Tonglim, Tongtang. “A
Memetic Hunting Search Algorithm for the Travelling Salesman
Problem”.2017. IEEE

[14] Zhou, Ai Hua., Zhu, Li Peng., Hu, Bin., Deng, Song., Song,
Yan., Qiu, Hongbin, Pan, Sen. “Traveling-Salesman-
Problem_Algorithm_Based_on_Simulated Annealing and Gene
Expression Programming”.2018. MDPI.

[15] Xutong, Li., Yan, Zheng. “Artificial Bee Colony Algorithm and Its
Application in Traveling Salesman Problems”.2019. IEEE

[16] Biswas, B. Mitra, A. Sengupta, S. “A Study of Travelling
Salesman Problem Using Reinforcement Learning Over
Genetic Algorithm”.2020. Turkish Journal of Computer and
Mathematics Education

[17] Liu, Junjun., Li, Wenzheng. “Greedy Permuting Method for
Genetic Algorithm on Travelling Salesman Problem”.2018. IEEE

[18]. Taoshen, Li, Zhihui, GE. A Multiple-QoS AnyCast Routing
Algorithm-based Adaptive Genetic Algorithm. 3rd International
Conference on Genetic and Evolutionary Computing. 2009

[19]. Simon, Philomina., Sathya, S Siva. Genetic Algorithm for
Information Retrieval. IAMA. 2009

[20]. Cheng, Chi-Tsun., Leung Henry. Genetic algorithm-inspired
UUV path planning based on dynamic programming. IEEE
Transactions on Systems, Man and Cybernetics Part C
Application and Reviews Vol 42 No 6 November. 2012

[21]. Roberge, Vincent., Tarbouchi, Mohammed., Labonte, Gilles.
Comparison of parallel Genetic Algorithm and Particle Swarm
Optimization for real-time UAV path planning. IEEE
Transactions on Industrial Informatics, 9, no. 1, February. 2013

[22]. Chaurasiya, Arjun Prasad, Sah, Roshan, and Dr. V. Sivakumar.
Energy-efficient routing for underwater acoustic sensor
networks using a genetic algorithm. 2022

[23]. Shakhtareh, Hazim., Sawalmeh Ahmad., Alenezi, Ali H.,
Sharief, Abdul Razeq, Almutiry, Muhammad, Ala Al-Fuqaha.
Mobile-IRS Asisted Next-Generation UAV Communication
Networks. 2022

[24]. Jiao, Ziyuan., Niu, Yida., Zhang, Zeyu., Zu, Song Chun., Zhu,
Yixin., Liu, Hangxin. Planning Sequential Task on Contact
Graph. 2022

[25]. Virgolin, Marco, Pissis, and Solon P. The symbolic Regression
is NP Hard. 2022

International Journal of Innovation Scientific Research and Review, Vol. 05, Issue 05, pp.4530-4534 May 2023 4534

