
International Journal of Innovation Scientific Research and Review

Vol. 05, Issue, 09, pp.5124-5131, September

Available online at http://www.journalijisr.com

SJIF Impact Factor 2023: 6.599

Research Article

DESIGNING AND IMPLEMENTING A SIGNED

1, *Ali Othman Albaji, 2Ali Hakami ,
5Abdelnaser Omran ,

1Dept. of Electronics and Telecommunications at the higher college of science
Jumaa, Tripoli, Libya. And a member in the Dept. of Telecommunication Software and Systems (TeSS) Research Group. Faculty of

2Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia

3Teaching assistant engineer at the
4Master of philosophy . Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia.

5Faculty of Engineering Sciences, Bright Star University, Brega city, Libya.
6Dept. of Electrical and Electronic, Sebha University Faculty of Engineering.

Received 09th July 2023; Accepted

ABSTRACT

One of the most critical components of electronic design is the computation of multiplication. Numerous
provide high speed and low power consumption, especially in signal processing. The booth multiplier is commonly utilized to i
digital system while reducing the number of parts produced.
to convert BCD input from the keyboard to Binary. It stores the two numbers to be multiplied in registers X & Y. When the equ
signal to Booth's Multiplier to start calculating the result.
FSM and other things are explained in a later section. The output interfac
algorithm is used to design the 16-bit hardware for the multiplier in this study. In addition, the LCD controller and PS/2 keyboard interface have been successf
tested.

Keywords: LCD, BCD, ANS, Booth Multiplier, Digital System, FSM

INTRODUCTION

The algorithm created by Booth is a double
multiplication method [1], that multiplies two binary numbers in 2's
complement notation. He used desk calculators to increase the
speed of his algorithm, which is of interest to those studying
computer architecture. The Booth algorithm can simplify the process
of multiplying binary numbers in signed 2's complement by
minimizing the number of additions and subtractions required. It
works by shifting strings of 0 in the multiplier without adding any
additional value. The multiplier requires no addition but just shifting
and a string of 1’s in the multiplier from bit weight 2^
can be treated as 2^(k+1) to 2^m. The booth algorithm must
examine the shifting and addition of the partial product's multiplier
bits. Multiplicands may be added, subtracted, or left unchanged
depending on the rules [2].

1. When a partial product has encountered the first least
significant value in a string of 1's in the multiplier, the
multiplicand will be subtracted from it.

2. When the first 0 of the partial product is encountered, the
multiplicand is added. This is done if there was a previo
the string of 0s in the multiplier.

3. The product does not change even if the multiplier bit is the
same as the previous one.

*Corresponding Author: Ali Othman Albaji,
1Dept. of Electronics and Telecommunications at the higher college of
and technology which belongs to the ministry of technical & vocational Education,
Souk Al- Jumaa, Tripoli, Libya. And a member in the Dept. of Telecommunication
Software and Systems (TeSS) Research Group. Faculty of Engineering, Universiti
Teknologi Malaysia, Johor Bahru, Malaysia.

Innovation Scientific Research and Review

 2023

.com

DESIGNING AND IMPLEMENTING A SIGNED MULTIPLIER RADIX-2 USING BOOTH’S ALGORITHM

Ali Hakami , 3Marwan Ali Abu Aneiza, 4Husam Mohammed Ahmed Banwair
Abdelnaser Omran , 6Abdusalama Daho

Dept. of Electronics and Telecommunications at the higher college of science and technology which belongs to the ministry of technical & vocational Education, Souk Al
Jumaa, Tripoli, Libya. And a member in the Dept. of Telecommunication Software and Systems (TeSS) Research Group. Faculty of

Malaysia, Johor Bahru, Malaysia.
Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia And Computer Tech, Samath College of Technology, Vocational Training

Corporation(TVTC), Saudi Arabia.
Teaching assistant engineer at the Higher Institute of Science and Technology Msallatah.

Master of philosophy . Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia.
Faculty of Engineering Sciences, Bright Star University, Brega city, Libya.

Electrical and Electronic, Sebha University Faculty of Engineering.

; Accepted 10th August 2023; Published online 25th September

One of the most critical components of electronic design is the computation of multiplication. Numerous techniques are used to design multipliers, which can
provide high speed and low power consumption, especially in signal processing. The booth multiplier is commonly utilized to i

produced. This research aims to design and implement a digital system binary model machine This module is
to convert BCD input from the keyboard to Binary. It stores the two numbers to be multiplied in registers X & Y. When the equ
signal to Booth's Multiplier to start calculating the result. This is the part that multiplies the binary numbers in X & Y and puts the result in the ANS register. Its
FSM and other things are explained in a later section. The output interface is to put the binary number in the ANS register on the LCD in BCD format.

bit hardware for the multiplier in this study. In addition, the LCD controller and PS/2 keyboard interface have been successf

LCD, BCD, ANS, Booth Multiplier, Digital System, FSM.

The algorithm created by Booth is a double-complemental
multiplication method [1], that multiplies two binary numbers in 2's
complement notation. He used desk calculators to increase the
speed of his algorithm, which is of interest to those studying
computer architecture. The Booth algorithm can simplify the process
of multiplying binary numbers in signed 2's complement by

izing the number of additions and subtractions required. It
works by shifting strings of 0 in the multiplier without adding any
additional value. The multiplier requires no addition but just shifting
and a string of 1’s in the multiplier from bit weight 2^k to weight 2^m
can be treated as 2^(k+1) to 2^m. The booth algorithm must
examine the shifting and addition of the partial product's multiplier
bits. Multiplicands may be added, subtracted, or left unchanged

oduct has encountered the first least
significant value in a string of 1's in the multiplier, the

When the first 0 of the partial product is encountered, the
multiplicand is added. This is done if there was a previous "1" in

The product does not change even if the multiplier bit is the

Dept. of Electronics and Telecommunications at the higher college of science
and technology which belongs to the ministry of technical & vocational Education,

Jumaa, Tripoli, Libya. And a member in the Dept. of Telecommunication
Software and Systems (TeSS) Research Group. Faculty of Engineering, Universiti

Figure 1. Booth’s Algorithm Flowchart

Basically, this research focuses on designing an FPGA implementing
a 16-bit integer multiplier using the radix
external PS/2 board and a 16x2 LCD are used
multiplier hardware for real-time verification. Here, the PS/2
keyboard serves as an input interface, allowing the user to instruct
the machine to carry out tasks like loading data, multiplying, and
displaying. Meanwhile, the LCD serv
displaying helpful messages and then displaying the necessary
information. Binary multiplication is one of the important arithmetic
operations in digital circuits like microprocessors, microcontrollers, or
FPGA devices. Different multiplications techniques are used for
signed/unsigned multiplication like sequential, Shift and add, Array
and Booth multiplier, etc. The booth Algorithm is one most used
algorithms for the implementation of two’s complement signed
multiplication. In this approach, it computes multiplication using

ISSN: 2582-6131

2 USING BOOTH’S ALGORITHM

Husam Mohammed Ahmed Banwair,

and technology which belongs to the ministry of technical & vocational Education, Souk Al-
Jumaa, Tripoli, Libya. And a member in the Dept. of Telecommunication Software and Systems (TeSS) Research Group. Faculty of Engineering, Universiti Teknologi

And Computer Tech, Samath College of Technology, Vocational Training

Higher Institute of Science and Technology Msallatah.
Master of philosophy . Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia.

September 2023

techniques are used to design multipliers, which can
provide high speed and low power consumption, especially in signal processing. The booth multiplier is commonly utilized to increase the performance of a

This research aims to design and implement a digital system binary model machine This module is
to convert BCD input from the keyboard to Binary. It stores the two numbers to be multiplied in registers X & Y. When the equal button is pressed it gives a start

This is the part that multiplies the binary numbers in X & Y and puts the result in the ANS register. Its
e is to put the binary number in the ANS register on the LCD in BCD format. The booth

bit hardware for the multiplier in this study. In addition, the LCD controller and PS/2 keyboard interface have been successfully

Booth’s Algorithm Flowchart

Basically, this research focuses on designing an FPGA implementing
bit integer multiplier using the radix-2 booth algorithm. An

external PS/2 board and a 16x2 LCD are used to design the integer
time verification. Here, the PS/2

keyboard serves as an input interface, allowing the user to instruct
the machine to carry out tasks like loading data, multiplying, and
displaying. Meanwhile, the LCD serves as an output interface,
displaying helpful messages and then displaying the necessary

Binary multiplication is one of the important arithmetic
operations in digital circuits like microprocessors, microcontrollers, or

multiplications techniques are used for
signed/unsigned multiplication like sequential, Shift and add, Array
and Booth multiplier, etc. The booth Algorithm is one most used
algorithms for the implementation of two’s complement signed

is approach, it computes multiplication using

additions/subtractions and arithmetic shift operations. The radix
Booth multiplier flow chart is shown in Figure 1 above [3,4].

BOOTH MULTIPLIER

A lot of high-performance electronic components, such as digital
signal processors, microprocessors, and filters, rely on the ability of
multipliers to perform at a high level. The performance of a system is
affected by the multiplier's efficiency. In addition, it is typically the
slowest component in the system, and it consumes a lot of area. Due
to the complexity of the design of the multiplicand, optimizing its
speed and area is a major challenge. This issue usually occurs when
the two constraints are conflicting. One of the most common ways to
improve the performance of the multiplicand is by implementing a
new algorithm called the Booth multiplier. This method takes
advantage of the multiple advantages of the conventional multiplicand
algorithm, such as the ability to reduce the number of steps required
to produce the result. PS/2 is an IBM Personal System interface
protocol for keyboards and is compatible with computer systems
connected via a 5-pin or 6-pin connector shown in Figure 2. The
keyboard is powered with a 5V source and ground connection along
with a clock and a data line for communication protocol. After
powering on, the keyboard goes with a self-initialization of internal
data. After initialization, the keyboard can communicate pressed key
information over the PS/2 interface [5].

Figure 2. Flow Chart Of Booth Multiplier

A. IBM PS/2 PIN-OUT

The longevity of IBM's PC architecture can be attributed to its ability
to support various software updates. This has played a significant role
in the evolution of both server and personal computer systems [2].A
keyboard has a large matrix of keys that are monitored by an onboard
computer. The specific processor that is used to control the keyboard
varies depending on the model. The goal of this process is to monitor
which key is being pressed and which is being released and send the
appropriate information to the host. The main processor of the
computer is responsible for debouncing and buffering the data in the

International Journal of Innovation Scientific Research and Review

additions/subtractions and arithmetic shift operations. The radix-2
Booth multiplier flow chart is shown in Figure 1 above [3,4].

performance electronic components, such as digital
signal processors, microprocessors, and filters, rely on the ability of
multipliers to perform at a high level. The performance of a system is

tion, it is typically the
slowest component in the system, and it consumes a lot of area. Due
to the complexity of the design of the multiplicand, optimizing its
speed and area is a major challenge. This issue usually occurs when

nflicting. One of the most common ways to
improve the performance of the multiplicand is by implementing a
new algorithm called the Booth multiplier. This method takes
advantage of the multiple advantages of the conventional multiplicand

the ability to reduce the number of steps required
to produce the result. PS/2 is an IBM Personal System interface
protocol for keyboards and is compatible with computer systems

pin connector shown in Figure 2. The
owered with a 5V source and ground connection along

with a clock and a data line for communication protocol. After
initialization of internal

data. After initialization, the keyboard can communicate pressed key

Flow Chart Of Booth Multiplier

The longevity of IBM's PC architecture can be attributed to its ability
to support various software updates. This has played a significant role
in the evolution of both server and personal computer systems [2].A

monitored by an onboard
computer. The specific processor that is used to control the keyboard
varies depending on the model. The goal of this process is to monitor
which key is being pressed and which is being released and send the

to the host. The main processor of the
computer is responsible for debouncing and buffering the data in the

16-byte buffer. The keyboard controller is also responsible for
decoding all of the data that the keyboard sends to the host. All of this
is done through a protocol known as IBM as shown in Figure 3 below
the IBM PS/2 PIN-OUT [6,7].

Figure 3. IBM PS/2 PIN

B. TIMING DIAGRAM OF PS/2 KEYBOARD

Figure 4.Timing Diagram Of PS/2 Keyboard

The data transaction format is shown above[8,9], the timing
in Figure3 Both clock and data signals are logic level high when the
keyboard is inactive. Any key on the keyboard is pressed, and then it
transmits 11-bit data. The data begin with a start bit (logic low),
followed by one byte of data, a parity bi
high). First, LSB data is transmitted, and then each bit should be read
on the falling edge of the clock signal. After completion of pressed
key information, both the clock and data signals return to logic high.
The PS/2 Keyboard transmission diagram is shown below. The 8
data byte represents part of a keyboard output scan code and returns
to a high value after key release. The PS/2 keyboard scan codes are
given in Figure 4 above.

C. MAKEUP CODE OF PS2 KEYBOARD

Figure 5. Makeup Code Of PS2 Keyboard

International Journal of Innovation Scientific Research and Review, Vol. 05, Issue 09, pp.5124-5131 September 2023

byte buffer. The keyboard controller is also responsible for
decoding all of the data that the keyboard sends to the host. All of this

hrough a protocol known as IBM as shown in Figure 3 below

IBM PS/2 PIN-OUT

TIMING DIAGRAM OF PS/2 KEYBOARD

Timing Diagram Of PS/2 Keyboard

The data transaction format is shown above[8,9], the timing diagram
in Figure3 Both clock and data signals are logic level high when the
keyboard is inactive. Any key on the keyboard is pressed, and then it

bit data. The data begin with a start bit (logic low),
followed by one byte of data, a parity bit, and finally a stop bit (logic
high). First, LSB data is transmitted, and then each bit should be read
on the falling edge of the clock signal. After completion of pressed
key information, both the clock and data signals return to logic high.

yboard transmission diagram is shown below. The 8-bit
data byte represents part of a keyboard output scan code and returns
to a high value after key release. The PS/2 keyboard scan codes are

MAKEUP CODE OF PS2 KEYBOARD

Makeup Code Of PS2 Keyboard

3 5125

LCD is Liquid Crystal Display it will display the character data and
16x2 LCD is shown in Figure 5. Input to the LCD is the ASCII
(American Standard Code for Information Interchange) value of the
character. This ASCII data is 8bit. Any 16×2 LCD can display in two
rows and 16 characters per row. The 16×2 LCD can be interfaced
with FPGA to control the display. LCD has 8 input bits and 3 control
signals (RW, RS, En), and VCC and GND [10,11,12].

D. 16x2 LCD DISPLAY

Figure 6. 16x2 LCD Display [13]

Figure 7. 16x2 LCD Display [14]

LCD display works in two modes: 8-bit and 4-
mode, It uses 8 data pins for receiving data. In 4
uses only 4 data pins for receiving data. In LCD, it has
data and command register. The data-on-data pins will store in
data or command register depending on RW pin data. If RW=0, it
selects the command register. And RW=1 for the data register.
command register stores the commands given to LCD. Based on the
command, it will perform specific tasks like initializing, clearing, and
setting the position of the display. Hex codes of the different
commands are shown in Table 1. The ASCII information of character
data in data registers will display on LCD. ASCII codes of the
numerical characters are also shown in Figures 6 and 7 above [15].

STANDARD LCD COMMANDS AND
FUNCTIONALITY

Below is a list of standard LCD commands. V0 is used to set the
contrast. A potentiometer and variable resistor can b
pin to set the exact contrast. To illuminate the LCD's backlight, supply
+5v to ground and LED+ as can be seen in Table 1.

Table 1. Standard LCD Commands And Functionality

S.
N

HEX
CODE

COMMAND TO LCD INSTRUCION REGISTER

1 0x01 Clear display screen
2 0x02 Return home

3 0x04 Decrement cursor (shift cursor to left)

4 0x06 Entry mode: Increment cursor (shift the cursor to the
right)

International Journal of Innovation Scientific Research and Review

LCD is Liquid Crystal Display it will display the character data and
16x2 LCD is shown in Figure 5. Input to the LCD is the ASCII
(American Standard Code for Information Interchange) value of the

is 8bit. Any 16×2 LCD can display in two
rows and 16 characters per row. The 16×2 LCD can be interfaced
with FPGA to control the display. LCD has 8 input bits and 3 control

VCC and GND [10,11,12].

[13]

[14]

-bit. In 8-bit display
mode, It uses 8 data pins for receiving data. In 4-bit display mode, it
uses only 4 data pins for receiving data. In LCD, it has two registers:

data pins will store in the
data or command register depending on RW pin data. If RW=0, it
selects the command register. And RW=1 for the data register. The

o LCD. Based on the
command, it will perform specific tasks like initializing, clearing, and

the position of the display. Hex codes of the different
commands are shown in Table 1. The ASCII information of character

ay on LCD. ASCII codes of the
numerical characters are also shown in Figures 6 and 7 above [15].

STANDARD LCD COMMANDS AND

Below is a list of standard LCD commands. V0 is used to set the
contrast. A potentiometer and variable resistor can be attached to this
pin to set the exact contrast. To illuminate the LCD's backlight, supply
+5v to ground and LED+ as can be seen in Table 1.

Table 1. Standard LCD Commands And Functionality

COMMAND TO LCD INSTRUCION REGISTER

Decrement cursor (shift cursor to left)

Entry mode: Increment cursor (shift the cursor to the

5 0x05 Shift display right

6 0x07 Shift display left

7 0x08 Display off, cursor off

8 0x0A Display off, cursor on

9 0x0C Display on, cursor off

10 0x0E Display on, cursor blinking

11 0x0F Display on, cursor blinking

12 0x10 Shift the cursor position to the left

13 0x14 Shift the cursor position to the right

14 0x18 Shift the entire display to the left

15 0x1C Shift the entire display to the right

16 0x80 Force cursor to beginning (1st line)

17 0xC0 Force cursor to beginning (2nd line)

18 0x30 8-bit 1 Line and 5x7matrix

19 0x38 8-bit 2 Line and 5x7matrix

20 0x20 4-bit 1 Line and 5x7matrix

21 0x28 4-bit 2 Line and 5x7matrix

DESIGN DESCRIPTION

The design of the research’s model can be explained in the following
steps in sequence

A. TOP-LEVEL IOBD DIAGRAM

The top-level input and output interface diagram is shown in Figure 7.
The PS2 Keyboard receiver module receives the data from the PS/2
keyboard. The output of the PS2 keyboard is loaded into a shift
register serially at negedge clk and then data remains u
until the key is pressed. The shift register has a scam code and
converts it into BCD format and it into the X & Y registers. First data is
stored in the X register if * is pressed and Second data is stored in
the Y register if # is pressed on the
module is used to multiply the data in X & Y registers. When the
equal to the button is pressed, Booth's Multiplier receives a start
signal and starts the multiplication using the Booth algorithm. LCD
Display Controller takes the X, Y, and Output of Booth multiplier and
sends them to the LCD display unit for display. 16x2 LCD Display
Controller unit initializes the LCD module and also displays the data.
Display data selection is based on Control signals from the controller
unit. It also converts 16-bit X, Y, and 32
ASCII data format for the LCD display. It controls the display unit
using RW, RS, and E control signals.

Figure 8 Top-Level IOBD Diagram

B. BOOTH MULTIPLIER ARCHITECTURE

The booth multiplier algorithm ASM chart machine is shown in Figure
8. This booth algorithm is an iterative algorithm and iterates for no. of
input bit times. Its hardware requires addition, subtraction, and
arithmetic right shift also counter. The 16

International Journal of Innovation Scientific Research and Review, Vol. 05, Issue 09, pp.5124-5131 September 2023

Shift display right

Shift display left

Display off, cursor off

Display off, cursor on

Display on, cursor off

Display on, cursor blinking

Display on, cursor blinking

Shift the cursor position to the left

Shift the cursor position to the right

display to the left

Shift the entire display to the right

Force cursor to beginning (1st line)

Force cursor to beginning (2nd line)

bit 1 Line and 5x7matrix

bit 2 Line and 5x7matrix

Line and 5x7matrix

bit 2 Line and 5x7matrix

The design of the research’s model can be explained in the following

LEVEL IOBD DIAGRAM

level input and output interface diagram is shown in Figure 7.
The PS2 Keyboard receiver module receives the data from the PS/2
keyboard. The output of the PS2 keyboard is loaded into a shift
register serially at negedge clk and then data remains unchanged
until the key is pressed. The shift register has a scam code and

into BCD format and it into the X & Y registers. First data is
stored in the X register if * is pressed and Second data is stored in
the Y register if # is pressed on the keyboard. Then Booth Multiplier
module is used to multiply the data in X & Y registers. When the
equal to the button is pressed, Booth's Multiplier receives a start
signal and starts the multiplication using the Booth algorithm. LCD

es the X, Y, and Output of Booth multiplier and
sends them to the LCD display unit for display. 16x2 LCD Display
Controller unit initializes the LCD module and also displays the data.
Display data selection is based on Control signals from the controller

bit X, Y, and 32-bit Z data into an 8-bit binary
ASCII data format for the LCD display. It controls the display unit
using RW, RS, and E control signals.

Level IOBD Diagram

BOOTH MULTIPLIER ARCHITECTURE

The booth multiplier algorithm ASM chart machine is shown in Figure
8. This booth algorithm is an iterative algorithm and iterates for no. of
input bit times. Its hardware requires addition, subtraction, and
arithmetic right shift also counter. The 16-bit inputs init X and init Y

3 5126

are appended with zeros as per the ASM chart and are stored into
33-bit registers X and Y. Final output of the multiplication is 32
which is X[32:1]. The LSB (Least Significant Bit) bit of X is not
considered in the final result. The data path unit and Control logic unit
is designed for the radix-2 booth algorithm. The control flow of
hardware checks the LSB two bits X1 and X0. If the two bits are the
same (00 or 11) then all of the bits of Accumulated data in x
shifted 1 bit to the right (Arithmetic right shift) as shown in the ASM
chart. If two bits are not the same and if the combination is 10 then
the Y is subtracted from X and if the combination is 01 then the Y is
added with X. 4-input is used along with an adder and
used to perform this operation. In both cases, results are loaded into
register Q or x in and after the addition or subtraction operation, the
Arithmetic right shift is performed on Q. In the arithmetic right shift
operation where the LSB bit Q1 is shifted into Q1 and also A32. The
final result of the multiplication will update in the Q [16,17].

ALGORITHM DESCRIPTION (ASM)

The design of finite state machines using the ASM method is
commonly used to visualize the various components of digi
Although it is similar to a state diagram, the ASM method is less
formal and easier to understand. A typical flowchart is used to
represent decision paths and procedural steps in algorithms, though
time relations are not included. A state mac
representation of the sequence of events that happen as a sequential
controller moves between steps. An algorithmic state machine
diagram provides several advantages over a conventional diagram.

1. ASM diagrams, are easier to interpret in larger state diagrams,
2. Conditions for a proper state diagram, are usually automatically

satisfied.
3. ASM diagrams can be easily converted to other forms.

One of the most important features of ASM diagrams is that they do
not display all the possible outputs and inputs of a given state. This
ensures that the correct inputs and outputs are identified as shown in
Figure 9.

 The positive logic signals that are high are asserted.
 The negative logic signals that are low are asserted.

Figure 9 Algorithm Description (ASM)

STATEMACHINEDIAGRAM

International Journal of Innovation Scientific Research and Review

are appended with zeros as per the ASM chart and are stored into
bit registers X and Y. Final output of the multiplication is 32-bit

which is X[32:1]. The LSB (Least Significant Bit) bit of X is not
t. The data path unit and Control logic unit
2 booth algorithm. The control flow of

hardware checks the LSB two bits X1 and X0. If the two bits are the
same (00 or 11) then all of the bits of Accumulated data in x in are

bit to the right (Arithmetic right shift) as shown in the ASM
chart. If two bits are not the same and if the combination is 10 then
the Y is subtracted from X and if the combination is 01 then the Y is

input is used along with an adder and a subtractor is
used to perform this operation. In both cases, results are loaded into

in and after the addition or subtraction operation, the
Arithmetic right shift is performed on Q. In the arithmetic right shift

bit Q1 is shifted into Q1 and also A32. The
final result of the multiplication will update in the Q [16,17].

ALGORITHM DESCRIPTION (ASM)

The design of finite state machines using the ASM method is
commonly used to visualize the various components of digital circuits.
Although it is similar to a state diagram, the ASM method is less
formal and easier to understand. A typical flowchart is used to
represent decision paths and procedural steps in algorithms, though
time relations are not included. A state machine diagram is a
representation of the sequence of events that happen as a sequential
controller moves between steps. An algorithmic state machine
diagram provides several advantages over a conventional diagram.

larger state diagrams,
Conditions for a proper state diagram, are usually automatically

ASM diagrams can be easily converted to other forms.

One of the most important features of ASM diagrams is that they do
and inputs of a given state. This

ensures that the correct inputs and outputs are identified as shown in

The positive logic signals that are high are asserted.
The negative logic signals that are low are asserted.

Description (ASM)

Figure 10 State Machine Diagram

Booth's algorithm can be implemented in many ways. The hardware
is designed using a controller and a
The operations in the data path unit are controlled by the control
signal and control signals are generated from the controller unit
(FSM). The State Machine diagram is shown in figure 10 above.

DATA AND CONTROL PATH UNITS

Figure 11 Data And Control Path Units

LdX, ldY and ldRes are used to update data into X, Y, and Result
registers. Reg_rst is used to reset X, Y, Result, and Shift Register
Output Q/Xin. Shift_enable, Load, Right_shift are control signals for
the Right shift register. If shift enable and Load is high and then input
Q_IN loaded into Q. If shift enable, Load is low and Right_shift is high
then Arithmetic right shift is performed on Q. clrc and incC are
Counter control signals. After Count=16 the
[32:1].

International Journal of Innovation Scientific Research and Review, Vol. 05, Issue 09, pp.5124-5131 September 2023

State Machine Diagram

Booth's algorithm can be implemented in many ways. The hardware
is designed using a controller and a Data path are shown in Figure 9.
The operations in the data path unit are controlled by the control
signal and control signals are generated from the controller unit
(FSM). The State Machine diagram is shown in figure 10 above.

DATA AND CONTROL PATH UNITS

Data And Control Path Units

LdX, ldY and ldRes are used to update data into X, Y, and Result
registers. Reg_rst is used to reset X, Y, Result, and Shift Register
Output Q/Xin. Shift_enable, Load, Right_shift are control signals for

hift register. If shift enable and Load is high and then input
Q_IN loaded into Q. If shift enable, Load is low and Right_shift is high
then Arithmetic right shift is performed on Q. clrc and incC are
Counter control signals. After Count=16 the result is updated with X

3 5127

PS/2 KEYBOARD HARDWARE

Figure 12 PS/2 Keyboard Rx Interface & Logic Architecture

This PS2 keyboard Rx takes the input from the PS/2 keyboard serially
and stores data in the output register X, Y. The PS/2 Keyboard Rx
interface & logic hardware architecture is shown in Figure 10. It has a
serial-in parallel-out shift register, a Lookup table, two 16-bit registers,
and three 1-bit registers. The serial-in parallel-out shift register takes
serial data at the negative edge of ps2clk and stores data after a 1-bit
shift operation. PS/2 keyboard scan code is available in the shift
register. LUT converts this scan code i.e., shift data into BCD data
and stores information at the relevant register.

The PS2 Keyboard communication protocols timing diagram is shown
in Figure 3. When any is pressed then the Keyboard sends CLK and
data serially. PS2 Keyboard Rx ASM chart is shown in Figure 11.
PS2 keyboard ASM chart represents the communication protocol. It
has 3 states: START, DATA, and PARITY state. When reset is
pressed then it enters into the START state and waits for keyboard
press i.e., negative edge CLK & ps2datain==0(start bit). If any key is
not pressed then ps2clk & ps2datain are maintained high
continuously. When the key is pressed then ps2clk==0 and
ps2datain==0 and stater enter into the DATA state. And the state is in
the DATA state for up to 11 clock cycles (i.e., 8 clock cycles). During
the DATA state, ps2datain loads into the serial-in parallel-out shift
register at each negedge of ps2clk. The state remains in a DATA
state for 11 clock cycles. The counter is used in the design to count
the number of ps2clk clock pulses. After 9 clock cycles, the state
enters into PARITY state. The Scan code is fully loaded into the shift
register and connected to the LUT for scan code to BCD format
conversion. Also, it checks for which *, #, and = keypress to store and
to state booth multiplier. And then in the next clock (11th clock cycle),
the state goes to START state and again waits for a keypress.

PS/2 KEYBOARD RXASM CHART

Figure 13 below illustrates the steps of the PS/2 KEYBOARD RX
ASM CHART

Figure 13 PS/2 Keyboard RX ASM Chart

LCD DISPLAY CONTROLLER HARDWARE

Figure 14 Lcd Display Controller Hardware

The LCD display controller hardware architecture is shown in figure
10. It has a multiplexer to select input data X, Y, and Z for the LCD
display. Shift register selects LSB 4bits i.e., BCD digits data and shifts
right by 4bits. The ASCII Lookup module converts it into 8-bit ASCII
data format. In any two LCD data i.e., LCD command or character, a
delay is required. To generate the delay, the Counter is designed and
controlled using control signals generated from the controller. The
controller is designed using a Finite state machine.

LCD display controller has 6 states: IDLE, SEL_IN, LCDCMD_INIT,
WAIT, LCDCMD_LINE, LCD_DISPLAY. By reset, FSM state enters
into IDLE state and stays same state until lcd_start signal is high. In
the SEL_IN state, multiplexer selects among the X, Y and Z based on
the key pressed information. In the LCDCMD_INIT state, LCD display
initializes by sending command like clear the display (01h), Return to
home (02h), entry mode (06h), display on and cursor blinking (0Eh),
selection of 2-line LCD 8-bit, display data in Line 1(80h) and display
data in Line 2(C0h). If LCD is not displaying anything then it is in
WAIT state until receive display or command signal. TO send the
LCD command RS=0(LCDCMD_INIT state), RW=0 and En=1. To

International Journal of Innovation Scientific Research and Review, Vol. 05, Issue 09, pp.5124-5131 September 2023 5128

display data in LCD, RS=1(LCD_DISPLAY state), RW=0 and En=1.
When E=1 then wait for 10us delay and then En=0 again wait for
1000 us to send new data or command as shown in figure 14 above.

SIMULATION RESULTS AND ANALAYSIS

A. BOOTH’S ALGORITHM

Figure 15 Simulation Results Of Booth’s Algorithm

For the multiplier first Input X=17=16'h0011=0000_0000_0001_0001
then 33-bit x as Initialx={16'd0,initx,1'b0} = 0,0000, 0000, 0000, 0000,
0000,0000,0010,0010=0 0000 0022

For the multiplier second Input Y=51=16'h0033=
0000_0000_0011_0011 then 33-bit Y as initialy={inity,16'd0,1'b0}
=0,0000,0000,0110,0110,0000,0000,0000,0000=0 0066 0000.

Table 2. Output Of Hardware Simulation Results

Counte
r

X X1X0 Add/Sub Y Shift Input Shifter
Output

1 0 0000
0022

10 sub 0 0066
0000

1
FF9A_002

2

1
FFCD_001

1
2 1

FCD_0
011

01 Add 0 0066
0000

0
0033_0011

0
0019_8008

3 0
0019_8

008

00 Add(Only
subtractio

n)

0 0000
0000

0
0019_8008

0 000C
C004

4 0 000C
C004

00 Add 0 0000
0000

0 000C
C004

0 0006
6002

5 0 0006
6002

10 Sub 0 0066
0000

1
FFA0_600

2

1
FFD0_3001

6 1
FD0_3

001

01 Add 0 0066
0000

0 0036
3001

0 001B
1800

7 0 001B
1800

00 Add 0 0000
0000

0 001B
1800

0 000D
8C00

8 0 000D
8C00

00 Add 0 0000
0000

0 000D
8C00

0 0006
C600

9 0 0006
C600

00 Add 0 0000
0000

0 0006
C600

0 0003
6300

10 0 0003
6300

00 Add 0 0000
0000

0 0003
6300

0 0001
B180

11 0 0001
B180

00 Add 0 0000
0000

0 0001
B180

0 0000
D8C0

12 0 0000
D8C0

00 Add 0 0000
0000

0 0000
D8C0

0 0000
6C60

13 0 0000
6C60

00 Add 0 0000
0000

0 0000
6C60

0 0000
3630

14 0 0000
3630

00 Add 0 0000
0000

0 0000
3630

0 0000
1B18

15 0 0000
1B18

00 Add 0 0000
0000

0 0000
1B18

0 0000
0D8C

16 0 0000
0D8C

00 Add 0 0000
0000

0 0000
0D8C

0 0000
06C6

17 0 0000
06C6

when counter = 17, the 33-bit X has loaded with 0 0000 06C6 and
Final result is 32-bit output and Result = 0000, 0000, 0000, 0000,
0000,0011,0110,0011= 0000 0363.In the above booth multiplier
simulation figure, the output of hardware simulation results are
matched with the theoretical step-by-step result.

B. PS2 KEYBOARD

Figure 16 Simulation Results Of Ps2 Keyboard

The PS2 keyboard receiver simulation waveform is shown in the
above figure. Hardware is designed to detect the key press and to
check valid keys. It will detect the following key: 0,1,2,3,4,5,6, 7,8,
9,A,B,C,D,E,F keys along with *,#, and = keys. If any other key is
pressed then it will not detect means it will not a valid data and not be
stored in any register. After pressing the first key (0,1,2,3,4,5, 6,7, 8,
9,A,B,C,D,E,F), Rx waits for the * key to be pressed then it stores into
the X memory. After the second key press, the Rx waits for the # key.
After Y stores into the register, waits for the = key press. If = key is
pressed then the controller unit generates the booth multiplier
hardware start signal.

C. LCD DISPLAY CONTROLLER

Figure 17 Simulation Results Of Lcd Display Controller

 LCD display controller simulation waveform is shown in the above
figure 1.16 Hardware is designed to initialize the LCD display and to
display the BCD data. LCD display initializes by sending commands
like clear the display (01h), Return to home (02h), entry mode (06h),
display on and cursor blinking (0Eh), selection of 2-line LCD 8-bit,
display data in Line 1(80h) and displays data in Line 2(C0h). During
LCD command mode RS=0, RW=0, and E=1. If C is pressed on the
keyboard, then C equivalent BCD data 12 is stored into X. Then it will

International Journal of Innovation Scientific Research and Review, Vol. 05, Issue 09, pp.5124-5131 September 2023 5129

display 12 data by sending ASCII codes of 1 and 2 as 8’h31 and
8’h32. During LCD display mode, RS=1, RW=0, and E=1.

LCD display BCD data

I. Ex. Z=3456

II. It first send’s 3, ascii code of 3=33
III. And 4, ascii code of 3=34
IV. And 5, ascii code of 3=35
V. And 6, ascii code of 3=36

VI. LCD display controller first initializes the LCD

1. During initialization, RS=0, RW=0, and En=0
2. display (01h),
3. Return to home (02h),
4. entry mode (06h),
5. display on and cursor blinking (0Eh),
6. selection of 2-line LCD 8-bit,
7. display data in Line 1(80h) and
8. displays data in Line 2(C0h).

VII. While displaying the data input in X is displayed in LCD

9. X=12
10. First data loaded into R32_reg. First 1 is extracted from

R32_reg
11. Data in R4 is compared in ASCI_LUT module
12. And corresponding character ASCII code is transferred to

the LCD
13. While displaying the LCD data

1. RW=0
2. RW=1
3. En=1

D. TOP-LEVEL DESIGN

Figure 18 Simulation Results Of Top-Level Design For Multiplier
Hardwar

The top-level design for multiplier hardware using the radix-2 booth
algorithm simulation waveform is shown in above figure 16. Hardware
is designed to initialize the LCD display and to display the BCD data.
LCD display initializes by sending commands like clear the display
(01h), Return to home (02h), entry mode (06h), display on and cursor
blinking (0Eh), selection of 2-line LCD 8-bit, display data in Line
1(80h) and displays data in Line 2(C0h). During LCD command mode
RS=0, RW=0, and E=1. If C is pressed on the keyboard, then C
equivalent BCD data 12 is stored in X. Then it will display 12 data by
sending ASCII codes of 1 and 2 as 8’h31 and 8’h32. During LCD
display mode, RS=1, RW=0, and E=1.

a. Initially wait for LCD initialization
b. Next, if any key is pressed then data is loaded into X, Y
c. The control unit will identify the keypress
d. Then it sends the start signal to the booth multiplier to start

multiplication
e. And sends the control signals to the LCD display controller to

which data is to be displayed in LCD.

CONCLUSION

The standards of LCD commands have been used in this research.
V0 is used to set the contrast. A potentiometer and variable resistor
can be attached to this pin to set the exact contrast. To illuminate the
LCD's backlight, supply +5v to ground and LED+ Multiplication is a
vital component of electronic design. Various techniques are utilized
to design multipliers, and they can provide high power consumption
and speed. The booth multiplier can also be used to improve the
performance of digital systems. The goal of this study is to develop a
digital system binary machine. It converts the input BCD from the
keyboard to binary and stores the two numbers in the registers X and
Y. The equal button can be pressed to start the calculation of the
result. The booth multiplier is a component that converts the binary
numbers in X and Y into a result in the ANS register. The output of
this device is sent to the LCD in a format known as BCD. The design
for the 16-bit hardware is based on the booth algorithm. The integer
16-bit multiplier hardware is designed using the booth algorithm. Also,
the PS/2 keyboard input interface and LCD controller are designed
and tested successfully.

REFERENCES

[1] shrivastava, s., singh, j., & tiwari, m. (2011). implementation of

radix-2 booth multiplier and comparison with radix-4 encoder
booth multiplier. international journal on emerging technologies,
2(1), 14-16.

[2] kawahito, s., kameyama, m., & higuchi, t. (1990). multiple-
valued radix-2 signed-digit arithmetic circuits for high-
performance vlsi systems. ieee journal of solid-state circuits,
25(1), 125-131.

[3] vlăduţiu, mircea. computer arithmetic: algorithms and hardware
implementations. springer science & business media, 2012.

[4] roth, charles, lizy k. john, and byeong kil lee. digital systems
design using verilog. cengage learning, 2015.

[5] http://vlabs.iitkgp.ernet.in/coa/exp7/index.html
[6] https://cse.iitkgp.ac.in/~chitta/coldvl/booth.html
[7] https://www.allaboutcircuits.com/technical-articles/how-to-

interface-mojo-v3-fpga-board-16x2-lcd-block-diagram-verilog-
code/

[8] https://www.futurlec.com/led/lcd16x2bla.shtml
[9] https://ieeexplore.ieee.org/abstract/document/1291430
[10] https://ieeexplore.ieee.org/abstract/document/1291430
[11] https://ieeexplore.ieee.org/abstract/document/5228240
[12] http://www.wseas.us/e-

library/conferences/malta2001/papers/193.pdf
[13] https://d1wqtxts1xzle7.cloudfront.net/43080016/fpga-with-cover-

pagev2.pdf?expires=1643637911&signature=oa6m5nltydo049h
t1suufoxuyzrjmnhmgnk8beibco1srn4ueoc9pxiuxdp8shciuje1cnn
5v7pkkd64hjd4x75kv4a8qd5s2bgb3aqjz-31dby-
skzzar7pkv3cijf66lj3hsqfkcqgtylp3cctufalkcm0pyezqf5okhcyzmo
dmfacaxahuuxz3pxqsry1ulmy3oxkfovgcq2rruqsvnagzw8krmytl9
r7gpacqhhdpuzmlt~ntn~zumozle5-
~fxuisqzcra17tulatt4rxia74cqly8ym16byzb2r7slv9yoj-
ugkgjysy3v1zdevzqj~l7ctd-xme2l41kuq__&key-pair-
id=apkajlohf5ggslrbv4za

International Journal of Innovation Scientific Research and Review, Vol. 05, Issue 09, pp.5124-5131 September 2023 5130

[14] http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.300.
 3261&rep=rep1&type=pdf
[15] https://www.researchgate.net/profile/akkureshi/publication
 /296673364_hardware_implementation_of_configurable_booth_

multiplier_on_fpga/links/56d7bbcc08aebabdb4030bfd/hardware
-implementation-of-configurable-booth-multiplier-on-fpga.pdf

[16] https://books.google.com.my/books?hl=en&lr=&id=bphudf6clgc
 &oi=fnd&pg=pp8&dq=booth%27s+algorithm+hardware+implem

entation.+advanced+digital+design&ots=9rvpzcmv0u&sig=lmqji
nnwpka-m1n9cwziz1zasgs&redir_esc=y#v=onepage&q&f=false

[17] https://ieeexplore.ieee.org/abstract/document/7020607

International Journal of Innovation Scientific Research and Review, Vol. 05, Issue 09, pp.5124-5131 September 2023 5131

