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ABSTRACT 
 

In this paper, the authors investigate the solution of a second-order fractional differential equation. They consider cases where either the variable u or v is 
missing. The paper also introduces the concept of a fractional semigroup of operators. This involves a mapping that represents bounded linear operators on a 
Banach space U. The one-parameter semigroup satisfies certain properties, such as the semigroup property and having an identity operator at y = 0. The 
derivative of this semigroup at y = 0 is called the infinitesimal generator. The main objective of the paper is to explore the fundamental properties of these 
fractional semigroups and their connection to the fractional derivative of the semigroup at y = 0. We confirm that we are using the definition of Al-Sharif and 
Malkawi [22] for the conformable fractional derivative. 
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INTRODUCTION 
 

Fractional differential equations are a fascinating area of study in 
mathematics. They involve derivatives of non-integer order, which 
adds a new level of complexity to traditional differential equations. 
These equations are used to model various phenomena in science 
and engineering, such as viscoelastic materials, electrical circuits, 
and biological systems. Fractional differential equations provide a 
more accurate representation of real-world processes that exhibit 
memory and long-range dependence.  
 
Solving fractional differential equations requires specialized 
techniques, such as fractional calculus and fractional operators. 
Researchers have developed different numerical and analytical 
methods to tackle these equations and understand their behavior. 
The study of fractional differential equations has applications in many 
fields, including physics, biology, finance, and control systems. It 
offers a deeper understanding of complex systems and contributes to 
the development of innovative solutions.  
 
Fractional calculus has become a captivating field in mathematical 
analysis. The concept originated from a question posed by L’Hospital 
in 1695 [15]. Researchers have since attempted to generalize the 
traditional derivative to the fractional derivative. Numerous definitions 
have been proposed, many of which utilize integral forms [9, 10, 13, 
17, 18, 19]. However, there have been inconsistencies among 
existing fractional derivatives. For instance, not all fractional 
derivatives satisfy the familiar product and quotient rules for 
derivatives, and most of them, except for the Caputo derivative, do 
not yield a derivative of zero for constant functions. 
 
You can see many important results made by several authors [1, 2, 3, 
4, 5, 6, 7, 8, 11, 12, 14, 16, 20, 21]. In 2014, Khalil and others 
introduced an intriguing definition of the fractional derivative known as 
the conformable fractional derivative, which employs a limit approach. 
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Definition 1.1. [11]  Let f : [0, ∞) → R be a function. The βth order 
“conformable fractional derivative” of f is defined by 
 

 

 
 

for all y > 0 and β ∈ (0, 1). If f is β−differentiable in some (0, a), a > 0, 
and lim y→0 + fβ(y) exists, then we define fβ(0) = limy→0+ fβ(y). 
 

Following Khalil, Katugampola gave a new definition that generalizes 
Definition 1 as follows: 
 
Definition 1.2. [8] Let f : [0, ∞) → R and y > 0. Then the fractional 
derivative of order β is defined by 
 

 
 

for all y > 0 and β ∈ (0, 1). If f is β−differentiable in some (0, a), a > 0, 
and limy→0+ fβ(y) exists, then we define fβ(0) = limy→0+ fβ(y). 
 

Definition 2 is a more general version of Definition 1 because it 
includes truncating the series 

 when k = 1, we obtain the formula in 
Definition 1. In 2020, Al-Sharif and Malkawi [22] defined a new 
modification of the conformable fractional derivative with classical 
properties. 
 
Definition 1.3. [22] Let f : [0, ∞) → R and y > 0. Then the fractional 
derivative of f of order β is defined by, 
 

 
 

where g is a continuously differentiable function such that g(0) = g′(0) 
= 1. 
 

If g(y) is taken to be g(y) = 1 + y, we get Definition 1 and if g(y) = ey, 
we get Definition 2. The purpose of this section is to present some 
properties of the gamma function; a very important function in 
mathematics and statistics. The gamma function is a generalization of 
the factorial function and defined as follows: for β > 0, 



 

                                         (1.1) 
 

The function Γ(β) is convex for positive real numbers and 
 

                                 (1.2) 
 

Using (1.2), the gamma function for β = n ∈ N, turns to be the 
factorial function: 
 

                                              (1.3) 
 

Theorem 1.1. [22] Let a ∈ (0, 1] and f, L be β−differentiable at a point 
y > 0. Then, 
 

 
 

Theorem 1.2. [22] Let a, n ∈ R and β ∈ (0, 1]. Then, we have the 
following results. 
 

 
 

We also have rather unusual results given in the next theorem. 
 
Theorem 1.3. [22] . Let β ∈ (0, 1] and y ∈ R. Then, 
 

 
 

Definition 1.4. (Fractional Integral). Let a ≥ 0 and y ≥ 0. Also, Let f 
be a function defined on (a, y] and β ∈ R . Then, the β − Fractional 
Integral of f is defined by 
 

 
 

If the Riemann improper integral exists. 
 

Theorem 1.4. [22] (Inverse property). Let a ≥ 0, y ≥ 0 and let f be a 
continuous function such that Iβ a f exists. Then 
 

 
 

Theorem 1.5. [22] Let β ∈ (0, 1] and φ, ψ be β − F ractional Integral 
on (a, y], 0 ≤ a < y. Then, 
 

 
 

In this paper, we investigate the solution of a second-order fractional 
differential equation of the form F (u; v; v(β); v(2β)) = 0, in the cases 
where either u is missing or v is missing. 
 
Let U be a Banach space, and Q : [0, ∞) → L(U, U) be a mapping 
that represents bounded linear operators on U. A family {Q(y)}y>0 ⊆ 
L(U, U) is referred to as a one-parameter semigroup if it satisfies Q(s 
+ y) = Q(s)Q(y), and Q(0) = I, where I is the identity operator on U. 
The derivative of the semigroup at y=0 is known as the infinitesimal 
generator of the semigroup. 

 
Remark 1.1. Whenever we mention the notation ”Mβ” in this paper, it 
refers to the conformable fractional derivative defined by Al-Sharif 
and Malkawi [22]. 

 
FRACTIONAL DIFFERENTIAL EQUATIONS 
 
In the context of solving a second-order fractional differential 
equation, let’s discuss the cases where either the variable u or v is 
missing. When solving a second-order fractional differential equation, 
it is not uncommon to encounter situations where one of the 
variables, either u or v, is missing. This means that the equation only 
involves derivatives of one variable, while the other variable is absent. 
 

In such cases, the solution strategy may differ depending on which 
variable is missing. If u is missing, the equation can be simplified to a 
fractional ordinary differential equation involving only the variable v. 
Similarly, if v is missing, the equation can be reduced to a fractional 
ordinary differential equation involving only the variable u. 
 

The solution of these simplified equations can be approached using 
various techniques, such as Laplace transforms, power series 
methods, or fractional calculus approaches. The specific method 
chosen depends on the nature of the equation and the desired form 
of the solution. 
 

It is important to note that the absence of one variable in a second-
order fractional differential equation does not necessarily imply a loss 
of generality or significance. In fact, such cases can provide valuable 
insights into the behavior and properties of fractional differential 
equations. I hope this sheds some light on handling situations where 
either u or v is missing in the solution of a second-order fractional 
differential equation. 
 

Let’s think about a fractional differential equation of the form: 
 

                                      (2.1) 
 

In this case, we have v(β) as the β-conformable derivative of v with 
respect to u, where β ∈ (0, 1]. Additionally, v(2β) = Mβ Mβv. It’s worth 
noting that this equation is not a standard one that we can easily 
handle. 
 

The object of this paper is to try to solve equation (1) in case either u 
is missing or v is missing using what we will call fractional reduction of 
order. There are two cases to be considered 
 

 
 

Case (i) v is missing 
 

In this case, let’s set v(β) as w. As a result, we have v(2β) = w(β). This 
reduces the equation’s order from 2β to β, which is much more 
manageable. 
 

Example 2.1. v(2β) − (v(β))2 = 1 
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You’re right, this equation is not linear. However, in this case, v is 
missing. So, let’s set v(β) as w and as a result, we have v(2β) = w(β). This 
transforms the equation into... 
 

 
 

we can solve this equation as a separable differential equation: 
 

Since w(β) = u1−β dw/du, [3], the equation w(β) = w2 + 1 can be written 
as: 

 
 

Thus tan−1(w) = 1/βxβ + β. Consequently, w = tan(1/β xβ + β). 
Replacing w by v(β) and then substituting v(β) by u(1−β) du/dv and 
integrating we get: 

 
 
Example 2.2.  4uβ−1(cos u)v(2β) − (sin u)(v(β))2 = 4 sin u. 
 

since v is missing, let’s substitute v(β) with w. As a result, we have v(2β) 
= w(β). This transforms the equation into 
 

 
 

The equation we have now is a separable differential equation: 
 

 
 
which can be solved to get  
 

 
Replacing w by v(β) and then substituting v(β) by u(1−β) dx/dy, we get: 
 

 
Case (ii) 
 

In this case we put v(β) = w. Then v(2β) = Mu
βw  = u 1-β MvwMuv = 

v(β)Mvw=wMvw, we use Mβ
uw to represent the fractional 

derivative of w with respect to u. Similarly, we can do the same for v. 
 

So, by making this substitution, we can simplify the equation and 
express it as a new equation with lower order in terms of w and v.  
 
Example 2.3. Consider vv(2β) + (vβ)2 = 0. 
 

 
Hence 

 
 
Solving this equation to get: 
 

vw = n. Thus vv(β) = b, 
 

This equation can be rewritten as vdv = buβ−1du, which is another 
separable equation. We can solve this equation to find the solution 
 

 
 
FRACTIONAL SEMIGROUPS OF OPERATORS 
 
In this section, the concept of a fractional semigroup of operators is 
introduced. This concept involves a mapping that represents bounded 

linear operators on a Banach space U. The key feature of this one      
- parameter semigroup is that it satisfies certain properties, such as 
the semigroup property and having an identity operator at y=0. 
 

One of the important aspects of studying fractional semigroups is 
understanding their derivative at y=0, which is referred to as the 
infinitesimal generator. The infinitesimal generator provides valuable 
insights into the behavior and properties of the semigroup. 
 

The main objective of the section is to delve into the fundamental 
properties of these fractional semigroups and establish their 
connection to the fractional derivative of the semigroup at y=0.7 By 
exploring these properties, researchers aim to enhance our 
understanding of the dynamics and characteristics of fractional 
semigroups.  
 
Definition 3.1. For a Banach space U, a family of operators 
{Q(y)}y≥0 ⊆ (U, U) is referred to as a fractional β-semigroup (or β-
semigroup) if β ∈ (0, ∞] and a > 0 for all a:  
 

 
 

Clearly, if β = 1, then 1-semigroup are just the usual semigroups. 
 
Example 3.1. We can define the space X as C[0, ∞), which 
represents the set of real-valued continuous functions on the interval 
[0, ∞). 
 
Now, let’s define (Q(y)φ)(s) = φ(s + 2√y). By showing that Q satisfies 
the properties of a 1/2- semigroup of operators, we can easily 
demonstrate that it is indeed a 1/2- semigroup. 
 
Definition 3.2. An β − semigroup Q(y) is called a a c0 − semigroup if, 
for each fixed x ∈ X, Q(y)u → u as y→ 0+. 
 

The congormable β − derivative of Q(y) at y = 0 is called the β − 
infinitesimal generator of the fractional β − semigroup Q(y), with the 
domain equals 
 

 
 

We will write A for such generator. 
 

Theorem 3.1. Let {Q(y)}y≥0 ⊆ (U, U) be a c0 − β − semigroup with 
infinitesimal generator A, 0 < β < 1. If Q(y) is continuously β − 
differentiable and u ∈ Dom(A), then 
 

 
 

Proof. Let’s get started with 
 

 
 
Now, using the Mean Value Theorem for conformable fractional 
derivative, see [6], we get 
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for some 0 < c < (yg(εy-β))β - yβ. 
 

 
 

Using L’Hopital’s Rule, we get 
 

 
Hence 

 
 

Similarly one can show that Q(y)u ∈ Dom(A) and Mβ(Q(y))u = AQ(y)u. 
 

Theorem 3.2. The in nitesimal generator of the above semigroup is 
 
 

 
 

Proof. 
 

 
Now, 
 

 
 

Using L’Hopital rule (with respect to ε) to get 
 

 
 

Thus the product gives 
 

 
Hence Aφ = φ′. 
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