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ABSTRACT 
 

Aims: A method for predicting the behavior of the crude oil extraction system by deep pumping is presented. Predicting the behavior of the rod pumping system 
requires solutions obtained through differential equations to which a whole set of boundary conditions is applied. For pumping rod assemblies, the vibrating 
string equation and boundary conditions describing initial rod assembly pressure and velocity, polished rod motion, and pump operating conditions are used. 
Methodology: The classical pumping system is described by a fairly flexible mathematical model based on numerically solved differential equations. Surface 
dynamogram and bottom (pump) dynamogram plus intermediate dynamograms can be determined for a wide range of bottom and surface conditions. This 
technique that will be presented allows the simulation of vast operating conditions, and the data obtained through these methods are useful in the design and 
use of rod pumping systems. 
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INTRODUCTION 
 

The simulation of the behavior of the rod assembly is done with the 
help of the one-dimensional vibrating string equation, using the 
Damping factor and the boundary conditions of the rod - pump 
system, [1],[2],[3],[4]. 
 

��

��� = �� ���(�,�)

��� −
���

��

��(�,�)

��
                                  (1) 

 
This equation describes longitudinal vibrations in rods and is 
therefore ideal in rod-pump applications.  
 

Also, in this mathematical model is incorporated the shock reflection 
phenomenon along the gasket, an important characteristic of real 
systems. The Damping factor used in equation (1) eloquently 
modifies the obtained solutions, even if the effects of friction 
(independent of viscosity) of tubing rods and the hysteresis of the 
steel from which the rods are made are also present.  
 

Fortunately, the viscosity-independent effects are relatively small, so 
the approximation of the Damping factor in the vibrating string 
equation is adequate, [5]. In equation 1, the Damping factor is 
represented by the dimensionless coefficient v which is determined 
according to the conditions in the field; this coefficient has a narrow 
range in which it varies (approx. 0 +0.2), [6]. 
 

 Due to mathematical conventions, in equation 1 the gravitational 
acceleration is omitted. The effect of gravity on the loading and 
elongation of the pump rod assembly will be treated separately. 

 

The movement of the polished rod is a function of the geometry of the 
pumping unit, the motor torque and the number of beats per minute 
achieved by it, [7].  
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Important boundary conditions will be used to determine the 
movement of the polished rod. 

 

From geometric considerations, it can be demonstrated that the 
position of the polished rod depending on the angle of the crank, e 
(fig. 1.) is given by the relationship [8]: 
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This equation, obtained from the general solution of the "four-bar 
linkage" problem, can describe the kinematics of any pumping unit. 

 

 
 

Fig. 1. Scheme of the pumping unit with rocker arm "four - bar 
linkage", 

 

If the rate of variation of the motor is negligible, the angular velocity of 
the crank is constant and equation 2 can be used to determine the 
position of the polished rod as a function of time. 



Angular speed with which the motor operates is determined by its 
own torque-speed characteristics and the imposed moment.  

 

The moment at the motor (with which it operates) is given by the net 
moment from the loading of the polished rod and from the opposite 
moment from the counterbalancing effect. The moment given by the 
load in the rod is obtained as a product of the load at the rod and the 
moment factor (torque), [9]. 
 

The torque factor, from mechanics, is given by, [10], [11]: 
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The counterbalancing moment that opposes the moment produced by 
the load in the probe is given by the relation: 
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where "d" is the phase angle required to orient the counterbalancing 
effect in relation to the weight. 

 

Thus, the moment imposed on the engine is the algebraic sum of the 
moment in the probe and the counterbalancing moment: 
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This net torque, together with the motor's torque-speed 
characteristics, determines the instantaneous speed at which the 
motor operates. Thus the instantaneous angular velocity of the crank 
can be determined depending on the transmission ratio of the reducer 
and the size of the washer, to reflect the variation of the engine speed 
as a response to the variation of the net torque. Inertia effects were 
not considered in this study. 

 

The most important boundary condition in deep rod pumping is that 
which describes the operation of the bottom pump. 

 

Undoubtedly, the mathematical model according to which the bottom 
pump worked, raised the biggest problems in the analysis of the 
operation of the extraction system with pumping rods. In this field, 
many studies and researches have formulated explicit expressions, 
which describe the behavior of the rod seal and the pump, but 
unfortunately these expressions have proven inadequate in relation to 
the real situations in the probe. It is therefore improbable that a 
classical analysis of the pump-pump system will provide a picture as 
close as possible to the one in the field. 

 

For this reason, it was agreed to write the following relationship 
describing the operation of the bottom pump: 
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where the parameters a,b and P(t) depend on the type of pump 
operations that will be simulated. 

 

Example: 
 

a) �= 0, � = 1, P(t) = 0 transform equation (7) into the form: 
 

��(�,�)

��
= 0 

 

which means that the pump works without the load, situation in the 
probe when the working valve remains open. 

 
 

b) b)� = 1, � = 0, P(t) = uc transform equation (7) into the form: 
 

u(L,t)=uc 
 

which means that the pump remains fixed in a certain position uc. 
This situation can be found when the fluid load is transferred from the 
rods to the tubing or from the tubing to the rods. 

 

c) c) � = 1, � = 1, P(t) = Wf/ EA transform equation (7) into the 
form: 

��
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that is, a constant load Wf is applied to the pump, a situation 
encountered when the fluid is lifted to the surface. 

 

It is instructive to show the options of parameters α, β and P(t) in the 
case of gas circulating through the pump. In this case, the pump 
diagram has the form of fig. 2. 

 
t1 - the moment when the working valve closes 
t2 - the time when the fixed valve opens 
t3 - the time when the fixed valve closes 
t4 - the moment when the working valve opens 

 

 
 

Fig. 2. Typical graph for the working valve at certain times 
Parameters�,�and P(t) will be: 

 
� = 0 

� = 1t1 ≤ t ≤ t2 
P(t) = ��[�(�, ��) − � (�, �)]  

 
Where t1, is the time when the working valve closes and a new 
pumping cycle starts again. 

 

Functions G1 and G2 determine the shape of the diagram when the 
fluid load is transferred from rods to tubing or vice versa.  

 

These functions depend on the pressure-volume relations of the 
mixture that begins to be pumped. If the amount of gas passing 
through the pump decreases, the volumetric efficiency increases and 
the pump dynamogram tends to a rectangular shape. 

 

A suitable choice for α, β and P(t) can also simulate this situation. 
 

The mathematical model described above is quite complicated and 
an analytical solution can be obtained with difficulty. It is much easier 
and more efficient to obtain solutions using partial differential 
equations. 
 

The equation of the vibrating string becomes: (written using finite 
differences) 
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�=0,1,2,…. 

x = 0,1,2,….,x* 
�����= u(x,t+∆�) 

���= u(x,t) 
�����= u(x,t-∆�) 

�����= u(x+∆x,�) 
�����= u(x-∆x,�) 

���(�, �)

���
≈

�(�, � + ∆�) − 2�(�, �) + �(�, � − ∆�)

∆��
 

���(�, �)

���
≈

�(� + ∆�, �) − 2�(�, �) + �(� − ∆�, �)

∆��
 

��(�, �)

��
≈

�(�, � + ∆�) − �(�, �)

∆�
 

 
Making these notations, the solutions of equation (9), for a Damping 
factor equal to zero, satisfy the equation of the vibrating string 
regardless of the value of ∆x. If the Damping factor is also 
considered, the solutions above are no longer exact, but they are still 
close. Experimentally, it was found that for a small Damping factor, 
the errors introduced by this numerical method are lower than 0.5%. 
Using digital computers, this method allows obtaining quick and 
economical solutions. 

 

In particular, the bottom pump conditions become, [12]: 
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Where −�∗
�� reffect the displacement of the pump. 

 

 Equation (10) is obtained directly from equation (6) by replacing the 
derivative with a difference. The mechanism of writing the pump 
conditions in differential form is the same as in equation (6). 
 

An appropriate choice of parameters a,b and P(t) is necessary 
depending on the operation of the valves. The times the valves are 
open and closed are determined by the computer through the 
following tests: 

 

T1 
 

As long as: 
�

�
⋅ ��∗

�� �∗
�� − 2 ⋅ �∗���� +

�

�
⋅

�∗���� = 0 (there is no load on the pump). 
 

The computer notices (records) when the difference ��∗ � −

��∗ ���changes the sign (from positive value to negative value). This 
means that the pump has reached its lowest position, at which point 
the work valve has closed. 

 

T2:  
 

As long as:
�
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0 (load on the pump),  
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At this point the fluid load is completely taken over by the rods and 
the fixed valve is open. 

 

T3:  
 

As long as: 
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changes sign (from negative value to positive value). At this moment 
the pump has reached its highest position and the fixed valve closes. 

T4:  
 

As long as:: 
�

�

�∗
U� − 2 ⋅�∗�� U� +

�

�
⋅ �∗��Uτ > 0 (load on the 

pump), the computer determines when the above expression 
becomes zero. At this moment the fluid load is taken over by the 
tubing and the working valve opens. 
 

The dynamic loads on the polished rod can be calculated using the 
differential version of Hooke's law. 
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The equation of the vibrating string is written without the gravitational 
term, which must be treated separately. 

 

Thus, the total load on the polished rod ( PRL ), static and dynamic, is 
given by: 

 

PRL= F� τ + W�                                                      (11) 
 

where Wb is the weight of the rods in the fluid. Similarly, the load and 
position of the pump can be correlated taking into account the effect 
of gravity. The dynamic load of the pump is given by the differential 
equation: 
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and the actual value of the load is obtained by subtracting the force 
due to buoyancy from the dynamic load: 

 

PL = F�∗ τ − F� 
 

The effects of gravity on the position of the pump are taken into 
account by adding the static elongation of the rods: 
 

Z�∗ τ = U�∗ τ +static elongation 
 

CONCLUSIONS 
 

The article presents a method for predicting the behavior of a deep 
pumping crude oil extraction system using numerically solved 
differential equations. These simulations allow the analysis of various 
operating conditions and are useful in the design and use of rod 
pumping systems. Also discussed are pump rod liner simulation, 
polished rod motion, and bottom pump operation. 

 

The final conclusion provides the conclusions of the study, 
emphasizing the importance of periodic monitoring of rod-pumped 
wells and the use of dynamograms to ensure efficient operation and 
prevent mechanical problems. Best practices are recommended for 
optimizing the performance of pumping systems and directions for 
future research are suggested, including optimization of operational 
parameters and implementation of advanced technologies for 
equipment monitoring and maintenance. 
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