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ABSTRACT 
 

Block hybrid method is adopted in this paper for the direct solution of second order ordinary differential equations of the form y’’ = (x, y) the method is driven by 
collocation and interpolation of power series approximate solution to give a continuous hybrid linear multistep methods which is implemented in block method to 
drive the independent solution at selected grid points. The properties of the drive scheme were investigated and found to be zero=stable, consistent and 
convergent. The efficiency of the method was tested and found to compare favorably with the existing methods. 
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INTRODUCTION 
 

The paper outline some of the important theory behind stiff computation and to direct users of numerical software to those codes which are most 
likely to be effective for their particular problem. In sciences and engineering, mathematical models are formulated to aid in the understanding of 
physical phenomena. The formulated model often yield an equation that contains the derivatives of the an unknown function. Such equation is 
referred to as differential equation. Interestingly differential equation arising from the modeling of physical phenomena often does have exact 
solutions. Hence the development of numerical methods to obtain approximate solution becomes necessary. To that extent, several numerical 
methods such as finite difference methods, finite element methods and finite volume methods among others, have been developed base on the 
nature and type of the differential equation to be solved. A differential equation can be classified into Ordinary Differential Equation (ODE’S), 
Partial Differential Equation (PDE’S), Stochastic Differential Equation (SDE’S), Impulsive Differential Equation (IDE’S), Delay Differential 
Equation (DDE’S) etc. Stuart and Humphries (1996). In recent time, the integration of Ordinary Differential Equation (ODE’S) is investigated 
using some kind of block methods. This paper discusses the formation of implicit linear multistep method (LMM) for numerical integration of 
special second order ODE’s which arises frequently in the area of Science and engineering especially mechanical system, control theory and 
celestial mechanics, Y. Skwame, J. Sunday and J. Sabo (2018). 
 
In this paper the system of special second order ODE’s of the form. 
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The paper carried out the derivation of the method where we consider two- step with a single off-grid point, through interpolation and collocation 
method approach. The details analysis of the method which include order, error constant, consistency, stability and convergences were done, 
some numerical example were consider in the paper. Y. Skwame, G. M. Kumleng and J. A. Bakari (2017),  I. H. Umar, (2008),  Y. Skwame, J. 
Sunday and J. Sabo, (2018),  and J. Sabo, T. Y. Kyagya, A. A. Bumbur, (2018). 
 

METHODOLOGY 
 
Consider the following parameter specification. 
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The collocation equation is of the form 
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writing (3.3) in matrix equation we have a system of equation in the form 
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Which can be solved by matrix inversion technique to obtained the values of parameters  .2...........,2,1,0,  kja
s

j  

Thus the proposed continuous scheme is of the form 
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Where )(),( xandx jj   are assumed polynomial of the form 
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j  ∊  {0, 1, ……, t-1 }                                      j ∊  {0, 1, ….. , m-1} 
 
where  t ˃0 are arbitrarily chosen interpolation points taken from 
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Evaluating (3.7) at  

2 nxx

  the above continuous scheme reduces to 
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This is the standard numerov method for the efficient solution of (2.1) 
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Similarly if we evaluate the second derivative function of (3.7) at 2
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 we obtained another discrete scheme of the form 
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Thus the application of (3.8), (3.9) and (3.10) simultaneously provides the values of 
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     at once without looking for any other method to provide 
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ANALYSIS OF THE METHOD 

To stat the initial value problem on the interval [x0, x2], we combine (3.8) when n=0 together with (3.9) and (3.10) explicitly we obtain the 

following set of equations 
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When (4.1) is put in matrix equation form, we have for n 
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To normalize (4.2) for easy analysis, we multiply the matrices A(0),  A(1)  and   B(1)  by the inverse of A(0)  i.e 
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We obtain the normalized form as, 
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Stability consideration for (4.3) is of the form, 
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Which implies zero  Stability. Since  
1

 
 
The block method (4.3) yield order   p˃1, hence is consistent. 
 
Theorem (4.1)  consistency and zero stability are sufficient condition for linear multistep method to be convergent. Since the method is 
consistent and zero stable, it implies the method is convergent for all point. C. baker, G.monegato, J. Pryce and G. V. Bergh (2001),  Yusuph, Y. 
A. and Unumanyi P. (2002) 
 
REMARK 
 
For case K=2 with off grid at 3/2 interpolation point the summary of the block methods have the following order and error constant in tabular 
form. 
 

Evaluating point Order Error Constant 
X  =   xn+2 
(3.8) 

4 1/240 

X  =   xn+3\2     (3.9) 4 11/480 
X   =    x0 
(3.10) 

4 1/276 

   

These schemes are zero  -  stable, Consistent and Convergent. 
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Conclusion/Recommendation 
 
In this paper we discussed a block hybrid method of second derivative linear multistep method (LMM) which focusing in solving special second 
order ordinary differential equation. The analysis of the method was studied and found to be Stable, Consistent  and  Convergent. This study 
concluded that it has been shown in many literatures, the multistep hybrid method is very effective method for solving second order differential 
equation of the form (2.1). 
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