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ABSTRACT 
 

This work presents a two-step nonlinear explicit third-order method for solving Initial Value Problems (IVPs) whose solutions possess singularities. The 
qualitative properties - local truncation, stability and convergence of the constructed method are also discussed. 
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INTRODUCTION 
 

Many numerical methods for solving 
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are based on the assumption that the solution is locally represent 
able by a polynomial. However, when 1 or its theoretical solution y(x) 
is known to possess a singularity, it becomes inappropriate to 
represent the solution in the neighborhood of the singularity by a 
polynomial [1], [2]. The solutions produced around singularity points 
by Runge-Kutta type methods, Obrechk off and general linear 
multistep methods are usually very poor as these methods are based 
on local representation by polynomials [4], [1], [5], [3]. [4] is a pioneer 
work on quadrature formulas based on rational interpolating 
functions. Seen to be effective in the neighborhood of the singularity 
and even beyond are the rational interpolation schemes proposed in 
[5] and [2]. In [2], the author replaced the general rational function of 

[4] with 
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xF   where )(xmP  and )(xnQ are respectively 

polynomial of degree m and n. The limitation of classical methods in 
solving problems with singularities can be overcome by constructing 
methods that use a rational functions as local representation of the 
theoretical solution [1]. This is true as rational functions are more 
appropriate for the representation of functions close to singularities 
than polynomials. Based on this approach, several methods have 
been proposed [6], [7], [8], [9] [10].The works [6],[7], [9], [10], [11], 
[12], [14] established that solution around singularity point are well 
approximated by this approach. In this work, a two-step nonlinear 
explicit third-order method for solving (1) is presented. The starting 
values are obtained using the explicit one-step method proposed in 
[14]. The local truncation error and absolute stability of the method 
are also discussed. 
 

CONSTRUCTION OF PROPOSED METHOD 
 
Here, we present the construction of the proposed two-step nonlinear 
explicit third-order method for solving (1). This section assumes that  
the theoretical solution y(x) can be locally represented by the rational 
interplant 
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satisfying the following: 
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Substituting for expressions and simplifying (3) yields 
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Eliminating the undetermined coefficients 0210  and ,, baaa in (4) 

results in 
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The resulting scheme (9) is a two-step, nonlinear, explicit method. We 
shall refer to (9) as TSNEM which is the method proposed in this 
work. 



Local truncation error and absolute stability of constructed 
method 
 

In this section, we consider the associated local truncation error (lte) 
and the absolute stability properties of the proposed method. 
 
Local Truncation Error 
 

Local Truncation Error: The local truncation error knxknT  at   is 

defined as 
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where, )( nxy  is the theoretical solution. From the above, the local 

truncation error of the proposed TSNEM method is obtained as 
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Order of an Ordinary Differential Equation 
 

Order of the proposed TSNEM method: A numerical method is said to 
be of order p if p is the largest integer for which
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hknT . Using the above, the 

order of the proposed TSNEM method is obtained as p = 3. 
 
Conclusion 
 
In this work, a two-step nonlinear explicit third-order method for 
solving Initial Value Problems (IVPs) whose solutions possess 
singularities had been derived. The qualitative properties - local 
truncation, stability and convergence of the constructed method was 
also discussed. The method is therefore recommended for problems 
whose solution possesses singularity. 
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