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ABSTRACT 
 

In mathematics, the differential geometry of surfaces deals with the differential geometry of smooth surfaces with various additional structures, most often, a 
Riemannian metric. Surfaces have been extensively studied from various perspectives: extrinsically, relating to their embedding in Euclidean space and 
intrinsically, reflecting their properties determined solely by the distance within the surface as measured along curves on the surface. One of the fundamental 
concepts investigated is the Gaussian curvature, Surfaces naturally arise as graphs of functions of a pair of variables, and sometimes appear in parametric form 
or as loci associated to space curves. The aim of this paper is to compare   between Curvature and Normal Curvature on Smooth Logically Cartesian Surface 
Meshes using Matlab And we found In case 1  , case 2  and case 3 figures show the main results between two sheets curvature  and one sheet  curvature when 
we adjust the parameter   in 3 Axis   vectors as follows in case 1  shown that the parameters as two faces  curvature ,  In case 2   shown that the parameter of 
case 2 as  a positive face of curvature (upper curvature ) or  one sheet curvature and case 3  processed the parameters in negative way of curvature (lower 
curvature ) or  one sheet curvature .  As for the normal curve shown the sample data in positive direction of plan    that means is approximately near to one sheet 
positive direction. 
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INTRODUCTION 
 

Differential geometry is  a  discipline  of  mathematics  that  uses  the  
techniques  of  calculus  and  linear  algebra  to  study  problems  in  
geometry.  The theory of plane, curves  and surfaces  in  the  three-
dimensional  Euclidean  space  formed the basis for development of 
differential geometry  during  the 18th and  the  19th  century.  Since 
the late 19th  century,  differential  geometry  has  grown  into  a  field  
concerned more generally with the geometric structures on  
differentiable manifolds, [2, 4, 6] Differential geometry is  closely  
related  to  differential  topology  and  the  geometric  aspects of the 
theory of differential equations. Differential  geometry  arose  and  
developed  as  a  result  of  and  in  connection  to  the  mathematical  
analysis  of  curves  and  surfaces[10]. Curvature formulas for 
parametrically defined curves and surfaces are well-known both in the 
classical literature on Differential Geometry and in the contemporary 
literature on Geometric Modeling . Curvature formulas for implicitly 
defined curves and surfaces are more scattered and harder to locate 
[15]. The curvatures of a smooth surface are local measures of its 
shape. Here we consider analogous quantities for discrete surfaces, 
meaning triangulated polyhedral surfaces. Often the most useful 
analogs are those which preserve integral relations for curvature, like 
the Gauss/Bonnet theorem or the force balance equation for mean 
curvature. For simplicity, we usually restrict our attention to surfaces 
in Euclidean three-spaces ��� [9]. 
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PLANE CURVES 
 
Now let’s consider in particular plane curves (� =  2). We equip  
�� with the standard orientation and let � denote the 
counterclockwise rotation by 90° so that �(��) = ��and for any 
vector �, �(�) is the perpendicular vector of equal length such that 
{�, ��} is an oriented basis. Given a (regular smooth) plane curve α, 
its (unit) normal vector [DE: Normal eneinhe its vector] � is defined 

as �( �)  = �(� ( �)). Since ��⃗ = �′ is perpendicular to  , it is a 
scalar multiple of  �. Thus we can define the (signed) curvature 

��  ��   �  ��� = ��⃗    (�� �ℎ��  �� = ±���⃗ � = ±� .  For an 

arbitrary regular parameterization of �, we find 
 

�� =
det (�̇, �̈)

|�̇|�
 

 

From � ⊥  � ���   � ′ = ��� we see immediately that � ′ =

−���We can combine these equations as 
 

�
�
�

�
′

= �
0 ��

−�� 0
� �

�
�

� 

 

Rotating ortho normal frame, infinitesimal rotation (speed  �� given 

by skew-symmetric matrix. The curvature tells us how fast the tangent 
vector T turns as we move along the curve at unit speed. Since 
� ( �) is a unit vector in the plane, it can be expressed as 
(��� �, ��� �) for some � =  �( �). Although � is not uniquely 
determined (but only up to a multiple of 2�) we claim that we can 
make a smooth choice of � along the whole curve. Indeed, if there is 
such a �, its derivative is � ′ = �� Picking any �� such that � (0)  =

(��� ��, ��� ��)  define �( �) ≔ �� + ∫ ��(�)��
�

�
 This lets us 



prove what is often called the fundamental theorem of plane curves 
[DE: Hauptsatz der lokalen Kurventheorie] (although it really doesn’t 
seem quite that important): Given a smooth function  �� = � → �� 

there exists a smooth unit-speed curve � ∶  � →  �� with signed 
curvature �� this curve is unique up to rigid motion. First note that 

integrating �� gives the angle function � ∶  � →  �� (uniquely up to 

a constant of integration), or equivalently gives the tangent vector  
� =  (��� �, ��� �) (uniquely up to a rotation). Integrating T then 
gives � (uniquely up to a vector constant of integration, that is, up to 
a translation). [7] 
 

CHARACTERIZING PLANE CURVES 

 
A plane curve is a curve which is contained in a two-dimensional 
plane. This section will look to describe a plane curve as a function of 
how much the curve is bending at points along the curve. For a plane 
curve the amount of bending experienced at each point is a scalar 
value called curvature. A plane curve can be determined up to rigid 
transformations by its curvature. Much of the current work on shape 
analysis uses a limited number of landmarks to describe the shape. 
Using only a limited number of landmarks may well result in a large 
amount of useful information being lost. Furthermore, if the shapes lie 
in different areas of space, Procrustes methods using landmarks  are 
required to align the shapes. The technique of using curvature to 
analyse shapes offers an alternative to these approaches. Curvature 
can be calculated over the whole curve which limits the amount of 
information about the shape which is lost [6].  
 

CURVES 
 

Definition (IV.A): 
 

Many plane curves can be described as the graph of a function 
� ∶  [�, �]  →  �. But such a simple curve as a plane circle cannot  
And for space curves, it is obvious that one has to find other means of 
description:  We let again  ���resp.  ���denote ordinary 
2−, ����. 3 − ����������� vector spaces, equipped with 
orthonormal bases {�, �}, ����. {�, �, �}[13]. One of the most 
important tools used to analyze a curve is  the  Frenet  frame,  which  
is  a  moving  frame  that  provides  a  coordinate  system  at  each  
point  of  the  curve  that  is  "best  adapted" to the curve near that 
point. Different space curves are  only  distinguished  by  the  way  in  
which  they  bend  and  twist  and  quantitatively  measured  by  the  
differential geometric invariants called curvature and torsion of the 
curve [3].  
 

Definition (IV. B) 
 

A curve is called regular if it is never stationary. In other 
words, the speed is always positive, or the velocity never 
vanishes [11]. 

 
CURVATURE 
 

Definition (V.A): 
 

Well, a line is not curved at all; its curvature has to be zero. A circle 
with a small radius is more  ”curved” than a circle with a large radius. 
Circles and lines have constant curvature. Curves that are not (pieces 
of) circles or lines will have a curvature varying from point to point [5]. 
 

Definition (V.B): 
 

let �: � → �� be a curve parametrized by are length ��� the number 
|�′′(�)| = �(�) �� ������ ��������� [14 ]. 
 

SMOOTH CURVES 
 

Our goal is to define a notion of curvature and torsion for discrete 
curves We will compare our discrete notions to those of the classical 
(smooth) differential geometry and as such to parametrized 
curves �: �� → ���. We will always assume s to be sufficiently 
differentiable [4]. 
 

TOPOLOGICAL SURFACES 
 

We mostly interested in smooth regular surfaces defined in the 
following section. However few times we will use the following general 
definition. A connected subset  �   in the Euclidean space ���  is 
called a topological surface (more precisely an embedded surface 
without boundary ) if any point of  ���  admits a neighborhood � in 
� that can be parameterized by an open subset in the Euclidean 
plane; that is, there is an injective continuous map � →  � from an 
open set � ⊂ �� such that its inverse � →  � is also continuous 
[2]. 
 

THE GEOMETRY OF SURFACES 
 

We have an idea of what a surface is, how do we detect its 
geometry? One of the most important techniques in mathematics and, 
indeed, all of the natural sciences, is that of linear approximation. By 
this we mean the following. We recognize that the nonlinear or curved 
object at hand is too complicated to study directly, so we approximate 
it by something linear: a line, a plane, a Euclidean space. We then 
study the linear object and, from it, infer results about the original 
curved object. [8]. 
 

CURVATURE DISPLAYING 
 
Methods of displaying curvature include normal vectors, contour lines 
and color. Normal vectors can indicate the surface curvature by a 
length proportional to the radius of curvature.  Contour lines include 
reference plane and a series of equally spaced planes parallel to it. 
The intersection of these planes with the surface results in planar 
curves on the surface. These curves can aid in determining the 
surface features, e.g. saddle points appear as passes and maxima 
and minima appear as encircled .Displaying curvature variation as 
color  variation is used scale in which the minimum curvature value 
corresponds  to one end of the color spectrum and the  maximum 
curvature value to the other  end of the spectrum, with a linear  
distribution in between. Color change represents a percent change in  
curvature, i.e. a logarithmic color  scale [12]. 
 

CURVATURES OF SMOOTH SURFACES 
 
Given a (two-dimensional, oriented) surface M (smoothly immersed) 
in ��we understand its local shape by looking at the Gauß map 
� ∶  � → �� given by the unit normal vector � = ��  at each point 

∈  � . Its derivative at � is a linear map from ���   ��  �����  But 

these spaces are naturally identified, being parallel planes in ��so 
we can view the derivative as an endomorphism −��: ���   →

 ���    The map  �� is called the shape operator (or Weingarten 

map). The shape operator is the complete second-order invariant (or 
curvature) which determines the original surface M . Usually, 
however, it is more convenient not to work with the operator �� but 

instead with scalar quantities. Its eigenvalues ��   ���  �� of �� are 

called principal curvatures, and (since they cannot be globally 
distinguished) it is their symmetric functions which have the most 
geometric meaning. 
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We define the Gauss curvature  � = ���� as the determinant of  �� 

and the mean curvature  � =
��� ��

�
  as its trace. Note that the sign 

of � depends on the choice of unit normal  , and so often it is more 
natural to work with the vector mean curvature (or mean curvature 
vector) � = ��  Note furthermore that some authors use the 

opposite sign on �� and thus �, and many us  � =
��� ��

�
  justifying 

the name mean curvature [9]. 
 

NORMAL CURVATURE 
 
We now tackle the problem of defining curvature on regular surfaces. 
We do this by expressing it in terms of the curvatures of regular 
curves on the surface. We start with the notion of normal curvature, 
which is defined with respect to a given regular curve on a surface. 
 

Definition (XI.A) 
 

Let � be a regular curve on regular surface � passing through point 
� ∈  �, k be the curvature of � at �, n be the unit normal vector to � 
at �, � be the unit normal vector to the surface at �, and ��� � = <
�, � >,  Then the normal curvature of � at point p is defined to be 
the signed quantity�� = � cos �. At first glance, this definition 
doesn’t seem terribly useful, since we’d like a definition of curvature 
that only depends on the properties of the surface, independent of the 
curves we can draw on it. It turns out that the definition of normal 
curvature is independent of the specific choice of curve � and only 
depends on the value of its tangent at point p. To do this, we first 
express the normal curvature in terms of the differential of the Gauss 
map. � � �denotes the restriction of the Gauss map to the curve �. 
Since the normal vector  � (�) is orthogonal to every tangent vector 
at �, < � (�), ��(0) > =< � �(0), ��(0) > = 0  Differentiating 
both sides yields < (� ��)�(0), ��(0) >=<
� (�), ���(0) >.Thus, 
 

�� = �(0) cos � 

= �(0) < �(0), � ��(0)� > 

=< ���(0), � ��(0)� > 

=  −< ��(0), (� ��)�(0) > 
=  −< ��(0), ���(�′(0)) > 

 
The last line thus shows that the normal curvature only depends on 
the tangent �′(0) This development is very reassuring, since it gives 
us a notion of the curvature of a surface in a specific direction in the 
tangent plane at p, namely �′(0). A natural next step would be to 
determine the directions of minimum and maximum normal curvature, 
and if a minimum and maximum even exist. It turns out that they do, 
and that they are the negative eigenvalues of the differential of the 
Gauss map at point � [1]. 
 

Theorem (XI.B) 
 

Let � be a regular surface and � ∈  �. Let  �� , �� be the minimum 
and maximum normal curvatures at p and  �� their associated 
principal directions. Then let � be some unit vector in �� .  Then for 
some � ∈  [0, 2�), � = �� cos � +  �� sin � and the normal 
curvature in the direction � is given by 
 

�� = �� cos� � + �� sin� �.                                                         [1] 
 

Example (XI.C) 
 

(Hyperboloid of Two Sheets Curvature). 
Let M denote the hyperboloid of two sheets 
 

��

��
+

��

��
−

��

��
= −1 

parameterized by   
 

�(�, �)  =  (�  ���ℎ � ��� �, � ���ℎ � ��� �, � ���ℎ �). 
 

Then 
 

�� = (� ���ℎ � ��� �, � ���ℎ � ��� �, � ���ℎ �) 
�� = (−� ���ℎ � ��� �, � ���ℎ � ��� �, 0) 

 

and 
 

��  × ��

= ( −�� sinh� � cos � , −�� sinh� sin � , �� sinh � cosh �) 
Dividing by  |��  × ��| 

� =
��  × ��

�
 

where 
� = 

����� sinh� � cos� � + ���� sinh� sin� � cos� � + ���� sinh� � cosh� � 
 

We then have 
 

� = �� cosh� � cos� � + �� cosh� � sin� � + �� sinh� � 
� = −�����ℎ � ���ℎ � ��� � �� � �

+ �� ���ℎ � ���ℎ � ��� � ��� � 
� = �� sinh� � sin� � + �� sinh� � cos� � 

 

with 
 

�� −  �� = ���� sinh� � cos� � + ���� sinh� sin� � cos� �
+ ���� sinh� � cosh� � 

= �� 
 

The following second partials then give �, � ��� �. 
 

��� = (� ���ℎ � ��� �, � ���ℎ � ��� �, � ���ℎ �) 
��� = (−� ���ℎ � ��� �, � ���ℎ � ��� �, 0) 

��� = (−� ���ℎ � ��� �, −� ���ℎ � ��� �, 0) 
� = ���. � 

=
−��� sinh� � cos� � − ��� sinh� � sin� � +  ��� ���ℎ � cosh� �

�
 

=
��� ���ℎ �  

�
 

using1 + sinh� � = cosh� � 
� = ���. � 

=
��� sinh� � cosh � ��� � ��� � − ��� sinh� �  ���ℎ � ��� � ��� � 

�
 

= 0 
� = ���. � 

=
��� sinh� � cos� � + ��� sinh� � sin� �

�
 

=
��� sinh� �

�
 

 

Hence, we obtain the Gauss curvature 
 

� =
�� − ��

�� − ��
=

������ sinh� �

��
 

 

which we may write as 
 

� =
1

�
��

��� ����� �
�

� 

 

where 
 

��

��� sinh� �
=

��

�
sinh� � cos� � +

��

�
sinh� � sin� �

+
��

�
cosh� � 
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Now, the coordinate functions of the parametrization are  � =
 � ���ℎ � ��� �, � =  � ���ℎ � ��� �  and  � =  � ���ℎ �, so 
the reader can check that the Gauss curvature may be written in 
terms of  �, � ��� � as 
 

� =
�

�������
��

���
��

���
��

���
� .                                                                  [8] 

 

MATLAB FOR EXAMPLE 
 

clc; 
clear all; 
[X,Y,Z] = meshgrid (-10:0.5:10,-10:0.5:10,-10:0.5:10); 
a=1; 
b=1; 
c=1; 
M = - X.^2/a^2 - Y.^2/b^2 + Z.^2/c^2; 
p=patch(isosurface(X,Y,Z,M,1)); 
set(p,'FaceColor','black','EdgeColor','none'); 
daspect([1 1 1]) 
view(3); 
camlight 
 
Input: 
 

Case 1: meshgrid (-10:0.5:10,-10:0.5:10,-10:0.5:10); 
 

Result for Case 1: 
 

 
 

Fig. (1): Curvature two faces 
 

Input: 
 

Case 2: meshgrid (-10:0.5:10,-10:0.5:10,0:0.5:10); 
 

Result for Case 2 : 
 

 
 

Fig.(2): Curvature positive face 

Input: 
 

Case 3: meshgrid (-10:0.5:10,-10:0.5:10,-10:0.5:0); 
 

Result for Case 3 
 

 
 

Fig. (3): Curvature  negative face 
 

MATLAP NORMAL CURVATURE 
 

Code: 
 

function [normals, curvature] = findPointNormals(points, 
numNeighbours, viewPoint, dirLargest) 
validateattributes(points, {'numeric'},{'ncols',3}); 
if(nargin< 2) 
numNeighbours = []; 
end 
if(isempty(numNeighbours)) 
numNeighbours = 9; 
else 
validateattributes(numNeighbours, {'numeric'},{'scalar','positive'}); 
if(numNeighbours> 100) 
warning(['%i neighbouring points will be used in plane'... 
' estimation, expect long run times, large ram usage and'... 
' poor results near edges'],numNeighbours); 
end 
end 
if(nargin< 3) 
viewPoint = []; 
end 
if(isempty(viewPoint)) 
viewPoint = [0,0,0]; 
else 
validateattributes(viewPoint, {'numeric'},{'size',[1,3]}); 
end 
if(nargin< 4) 
dirLargest = []; 
end 
if(isempty(dirLargest)) 
dirLargest = true; 
else 
validateattributes(dirLargest, {'logical'},{'scalar'}); 
end 
points = double(points); 
viewPoint = double(viewPoint); 
kdtreeobj = KDTreeSearcher(points,'distance','euclidean'); 
n = knnsearch(kdtreeobj,points,'k',(numNeighbours+1)); 
n = n(:,2:end); 
p = repmat(points(:,1:3),numNeighbours,1) - points(n(:),1:3); 
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p = reshape(p, size(points,1),numNeighbours,3); 
C = zeros(size(points,1),6); 
 

C(:,1) = sum(p(:,:,1).*p(:,:,1),2); 
C(:,2) = sum(p(:,:,1).*p(:,:,2),2); 
C(:,3) = sum(p(:,:,1).*p(:,:,3),2); 
C(:,4) = sum(p(:,:,2).*p(:,:,2),2); 
C(:,5) = sum(p(:,:,2).*p(:,:,3),2); 
C(:,6) = sum(p(:,:,3).*p(:,:,3),2); 
 

C = C ./numNeighbours; 
 

normals = zeros(size(points)); 
curvature = zeros(size(points,1),1); 
for i = 1:(size(points,1)) 
Cmat = [C(i,1) C(i,2) C(i,3);... 
C(i,2) C(i,4) C(i,5);... 
C(i,3) C(i,5) C(i,6)]; 
[v,d] = eig(Cmat); 
d = diag(d); 
[lambda,k] = min(d); 
normals(i,:) = v(:,k)'; 
curvature(i) = lambda / sum(d); 
end 
points = points - repmat(viewPoint,size(points,1),1); 
if(dirLargest) 
[~,idx] = max(abs(normals),[],2); 
idx = (1:size(normals,1))' + (idx-1)*size(normals,1); 
dir = normals(idx).*points(idx) > 0; 
else 
dir = sum(normals.*points,2) > 0; 
end 
normals(dir,:) = -normals(dir,:); 
end 
 
Demo example: 
 

x = repmat(1:49,49,1); 
y = x'; 
z = peaks; 
points = [x(:),y(:),z(:)]; 
[normals,curvature]  
= findPointNormals(points,[],[0,0,10],true); 
holdoff; 
surf(x,y,z,reshape(curvature,49,49)); 
holdon; 
quiver3(points(:,1),points(:,2),points(:,3),... 
normals(:,1),normals(:,2),normals(:,3),'r'); 
axisequal; 
 

Result: 
 

 
 

Fig. (4): Curvature  normal 

Results: 
 

 In case 1 and case 2 and case 3 figures show the main 
results between two sheets curvature  and one sheet  
curvature 

 When we adjust the parameter of the equation 
 

−
��

��
−

��

��
+

��

��
= 1                                                   (∗) 

 

in 3 Axis [�, �, �]  vectors  as follows 
 

Case 1:   � = [−10: 0.5 ∶ 10 ] , � = [−10: 0.5 ∶ 10 ],   � =
[−10: 0.5 ∶ 10 ] 
in this case the equation  (∗) show this parameters as two faces  
curvature and figure (6.1)  show the result  (two sheet ) 
 

Case 2 :  � = [−10: 0.5 ∶ 10 ] , � = [−10: 0.5 ∶ 10 ],   � =
[0: 0.5 ∶ 10 ] 
In this case the equation (∗) show the parameter of case 2 as 
positive face of curvature (upper curvature )or  one sheet curvature. 
 

Case 3 :  � = [−10: 0. curvature5 ∶ 10 ] , � = [−10: 0.5 ∶
10 ],   � = [−10: 0.5 ∶ 0 ] 
in this case the equation  (∗) processed the parameters in negative 
way of curvature (lower curvature ) or  one sheet curvature . 
In normal curvature show the sample data in positive direction of 
plane ��� that means is approximately near to one sheet positive 
direction. 
 

CONCLUSION 
 

In this work, we have provided  two different algorithms for curvature 
estimation comparison between Curvature and Normal Curvature And 
we found In case 1  , case 2  and case 3 figures show the main 
results between two sheets curvature  and one sheet  curvature when 
we adjust the parameter As for the normal curve shown the sample 
data in positive direction of plan  ��  that means is approximately 
near to case 2 direction. 
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