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ABSTRACT 
 

This paper investigates the existence of positive solutions for the sixth-order boundary value problem with three variable parameters: 
 

−u(6) + A(t)u(4) + B(t)u′′ + C(t)u = uφ + f(t, u, u′′), 0 < t < 1 
 

−φ′′ + λφ = µg(t, u(t)), 0 < t < 1 
 

u(0) = u(1) = u′′(0) = u′′(1) = u(4)(0) = u(4)(1) = φ(0) = φ(1) = 0, 
 

where µ is a positive parameter. The existence of the positive solution depends on µ, i.e. there exists a positive number µ such that if 0 < µ < µ the BVP has a 
positive solution. Using a fixed point theorem and an operator spectral theorem we give some new existence results. 
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INTRODUCTION 
 
Boundary-value problems for ordinary differential equations arise in 
different areas of applied mathematics and physics and the existence 
and multiplicity of positive solutions for such problems has become an 
important area of investigation in recent years; we refer the reader to 
[1-26] and the references therein. For example, the deformations of 
an elastic beam in the equilibrium state can be described as a 
boundary value problem of some fourth-order differential equations. 
Recently, boundary value problems for fourth-order ordinary 
differential equations have been extensively studied. It is well known 
that the deformation of the equilibrium state, an elastic beam with its 
two ends simply supported, can be described by the fourth-order 
boundary value problem: 
 

u(4)(t) = f (t, u(t), u′′(t)), 0 < t < 1,i 
 

                           u(0) = u(1) = u′′(0) = u′′(1) = 0.         (1) 
 

Existence of solutions for problem (1) was established for example by 
Gupta [15,16], Liu [17], Ma [18], Ma et. al., [19], Ma and Wang [20], 
Aftabizadeh [21], Yang [22], Del Pino and Manasevich [23] (see also 
the references therein). All of those results are based on the Leray-
Schauder continuation method, topological degree and the method of 
lower and upper solutions. In 2003, Li [24] studied the existence of 
positive solutions for the two-point boundary value problem with two 
constant parameters. Chai [25] established an existence result for the 
fourth-order boundary value problem with variable parameters. 
Recently, Wang and An [26] studied the existence of positive 
solutions for the second-order boundary value problem. It is well 
known that the deformation of the equilibrium state, an elastic circular 
ring segment with its two ends simply supported can be described by 
a boundary value problem for a sixth-order ordinary differential 
equation: 
 
 

u(6) + 2u(4) + u′′ = f(t, u), 0 < t < 1 
 

u(0) = u(1) = u′′(0) = u′′(1) = u(4)(0) = u(4)(1) = 0, 
 

 

However, there are only a handful of articles on this topic. In this 
paper we shall discuss the existence of positive solutions for the 
sixth-order boundary value problem 

 

−u(6) + A(t)u(4) + B(t)u′′ + C(t)u = uφ + f(t, u, u′′), 0 < t < 1 
 

−φ′′ + λφ = µg(t, u(t)), 0 < t < 1 
 

u(0) = u(1) = u′′(0) = u′′(1) = u(4)(0) = u(4)(1) = 0, 
 

φ(0) = φ(1) = 0,              (2) 
 

where λ ≥ −π2, A(t), B(t), C(t) ∈ C[0, 1] and µ is a positive parameter. 
Our results will generalize those established in [24,25,26]. More 
recently Li [27] studied the existence and multiplicity of positive 
solutions for the sixth-order boundary value problem with three 
variable coefficients. The main difference between our work and [27] 
is that we consider coupled system not only with three variable 
coefficients but also with a positive parameter µ. The existence of the 
positive solution depends on µ, i.e. there exists a positive number µ 
such that if 0 < µ < µ the BVP(2) has a positive solution. For this, we 
shall assume the following conditions throughout: 
 

(H1) f(t, u, v) : [0, 1] × [0, ∞) × (−∞, 0] → [0, ∞) and g(t, u) : (0, 1) × 
[0, ∞) → [0, ∞) is continuous. 
 

 (H2) a = sup t∈[0;1] A(t) > −π2, b = inf t∈[0;1] B(t) > 0, c = sup t∈[0;1] C(t) < 
0, π6 + aπ4−bπ2 + c > 0, 
 

where a, b, c ∈ R, a = λ1 + λ2 + λ3 > −π2, b = −λ1λ2 − λ2λ3 − λ1λ3 > 
0, c = λ1λ2λ3 < 0 and λ1 ≥ 0 ≥ λ2 > −π2, 0 ≤ λ3 < −λ2. 
 

Assumption (H2) involves a three-parameter no resonance condition.
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