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ABSTRACT

This paper investigates the existence of positive solutions for the sixth-order boundary value problem with three variable parameters:

-u® + A(tju® + B(tju" + C(t)u = up + f(t, u, u"), 0 <t <1

0"+ Ap =gt u(t), 0<t<1

u(0) = u(1) = u(0) = u"(1) = u®(0) = u®1) = 9(0) = 9(1) = 0,

where y is a positive parameter. The existence of the positive solution depends on , i.e. there exists a positive number i such that if 0 < u < the BVP has a
positive solution. Using a fixed point theorem and an operator spectral theorem we give some new existence results.

Keywords: Positive solutions; Variable parameters; Fixed point theorem; Operator spectral theorem.

INTRODUCTION

Boundary-value problems for ordinary differential equations arise in
different areas of applied mathematics and physics and the existence
and multiplicity of positive solutions for such problems has become an
important area of investigation in recent years; we refer the reader to
[1-26] and the references therein. For example, the deformations of
an elastic beam in the equilibrium state can be described as a
boundary value problem of some fourth-order differential equations.
Recently, boundary value problems for fourth-order ordinary
differential equations have been extensively studied. It is well known
that the deformation of the equilibrium state, an elastic beam with its
two ends simply supported, can be described by the fourth-order
boundary value problem:

u@e) = £ (¢, u(t), u'(t)), 0<t<1,i
u(0) = u(1) = u"0) =u"(1) = 0. (1

Existence of solutions for problem (1) was established for example by
Gupta [15,16], Liu [17], Ma [18], Ma et. al., [19], Ma and Wang [20],
Aftabizadeh [21], Yang [22], Del Pino and Manasevich [23] (see also
the references therein). All of those results are based on the Leray-
Schauder continuation method, topological degree and the method of
lower and upper solutions. In 2003, Li [24] studied the existence of
positive solutions for the two-point boundary value problem with two
constant parameters. Chai [25] established an existence result for the
fourth-order boundary value problem with variable parameters.
Recently, Wang and An [26] studied the existence of positive
solutions for the second-order boundary value problem. It is well
known that the deformation of the equilibrium state, an elastic circular
ring segment with its two ends simply supported can be described by
a boundary value problem for a sixth-order ordinary differential
equation:
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ud +2u® + u" =1t u), 0<t<1
u(0) = u(1) = u"(0) = u"(1) = u(4)(0) = u(4)(1) = 0,
However, there are only a handful of articles on this topic. In this

paper we shall discuss the existence of positive solutions for the
sixth-order boundary value problem

-u® + A(t)u® + B(t)u" + C(tju = ug +f(t, u, u"), 0 <t <1
—@" + A = pg(t, u(t), 0<t<1

u(0) = u(1) = u"(0) = u"(1) = u(4)(0) = u(4)(1) = 0,
¢(0)=0(1)=0, (2)

where A =2 -2, A(t), B(t), C(t) € C[0, 1] and p is a positive parameter.
Our results will generalize those established in [24,25,26]. More
recently Li [27] studied the existence and multiplicity of positive
solutions for the sixth-order boundary value problem with three
variable coefficients. The main difference between our work and [27]
is that we consider coupled system not only with three variable
coefficients but also with a positive parameter y. The existence of the
positive solution depends on , i.e. there exists a positive number
such that if 0 < u < y the BVP(2) has a positive solution. For this, we
shall assume the following conditions throughout:

(H1) f(t, u, v) : [0, 1] % [0, =) X (==, 0] — [0, =) and g(t, u) : (0, 1) %
[0, ) — [0, ) is continuous.

(H2) a = sup tepo;1 A(t) > -112, b = inf teo;1 B(t) > 0, ¢ = sup tepo;1 C(t) <
0, m + am*-bm2 + ¢ > 0,

where a, b, c € R,a=A + A2+ A3>-12, b = -A1A2 - A2A3 - AMA3 >
0,c=MMNA3<0and M =02A2>-m2, 0<A3<-A2.

Assumption (H2) involves a three-parameter no resonance condition.
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PRELIMINARIES

Let Y=C[0,1]and Y, ={u €Y :u(t) >0, t € [0,1]}. It is well known that ¥ is a Banach space
equipped with the norm |[ull, = supye(o q) [u(t)] -

We denote the norm ||ul|, by
lully = max {{lullg . [u"llo}-

It is easy to show that Z = {u e C?[0,1] : u(0) = u(1) = 0} is complete with the norm [ul|, and
+lu"llo < 2 ull, -

Set X = {u e C*[0,1] : u(0) = u(1) = w"(0) = u”(1) = 0} . For given x > 0 and v > 0, we denote
the norm ”“,\v by

Il = sup {|ul@@] +xlu" @] +v @)}, wex

te[0,1]

We also need the space X equipped with the norm
lelly = masx { el "l » [ }-

In [11]. it is shown that X is complete with the norms |||, , and |u|/,. and moreover Vu € X,

ullg < lu”lly < H“M}“n :

X,

Lemma 1 ([28]). Let E be a real Banach space and let P be a closed convex cone in E. Let ) be
a bounded open set of E, # € Q and Q : PN Q — P be completely continnous. Then the following
conclusions are valid.

(#) if Qu # vu for every u € PN J2 and v > 1, then i{(Q, PNQ, P) =1,

(i1) if mapping @ satisfies the following two conditions

(a) infy,e praa [|Qull > 0
(b) Qu#vuforeveryue PNINand 0 < v < 1,
then i(Q, PN, P) = 0.

Lemma 2. If u(0) = u(1) = 0 and u € C?[0,1], then |jul|, < |[u"]l,, and so, |lu|, = ||«"||, -
Proof. Since u(0) = u(1), there is a a € (0,1) such that v'(a) = 0, and so v/(f) = ft u'(s)ds,

t € [0,1]. Hence |u'(t)] < f |u”(s)|ds < fn |u”(s)|ds < [|[u"||g. t € [0,1]. Thus |||, < ||u"]|,. Since

u(0) = 0, we have u(t) = fn u (s)ds. t € [0,1], and so |u(t)] < fn |u'(s)|ds < ||v']|g- Thus [Jull, <
o < [ - Since [y s (1l 1) and Tl < o obtin hat s = 1ol
This finishes the proof.

Corollary 1. Vu € X, [ullg < [[u”]lo < [|[u®]|g, so we have [Jul|, = [[u®]|, .

Corollary 2. Let r > 0 and let u € 0B, N P. Then |[u|, = Hu“}“n =

Lemma 3. [11] (1+x+)7 Ny < Iy < Ml » and X is complete with respect to the
norm ||-||, ., where the constants x >0, » > 0.



International Journal of Innovation Scientific Research and Review, Vol. 03, Issue 12, pp.2128-2140 December, 2021 2130

For h € Y, consider the following linear boundary value problem:
—u'® +au™® + " +eu=n(t), 0<t<1
u(0) = u(1) = v”(0) = u”(1) = ¥ (0) = u?¥ (1) = 0, (3)
where a, b, ¢ satisfy the assumption
™ tart —br’+e>0 (4)

and let T' = 7% 4+ an? — bn? + ¢. The inequality (4) follows immediately from the fact that T = 7% +
an —bn? +¢ is the first eigenvalue of the problem —u(®) +au) +bu” +cu = Au, u(0) = u(1) = v (0) =
u”(1) = u®(0) = u!?(1) = 0 and ¢,(t) = sinnt is the first eigenfunction, i.e. T > 0. Because the
line l; = {(a,, be) : 7w +an? —br? +c= G} is the first eigenvalue line of the three-parameter boundary
value problem —u(® + au® + bu” + cu = 0, u(0) = u(1) = «"(0) = «”(1) = u®(0) = u* (1) = 0,
if (a,b, ¢) lies in I;, then by the Fredholm alternative the existence of a solution of the boundary value
problem (3) cannot be guaranteed.

Let P(\) = A + BX — e where 3 < 272, a > 0. Tt is easy to see that equation P(\) = 0 has two

= 32
real roots A, Ao = ﬁé’j—m, with A; > 0 > Ay > —x2. Let A3 be a number such that 0 < A3 < —\s.
In this case, (3) satisfies the following decomposition form:

d? d?
L L SE L L ALRE R
di2 P ﬂ(dﬁ

It is obvious that @ = A1 + Ao 4+ A3 > =72, b= —Ada — A2dz — Aidz > 0, = A A2z < 0.

_u(ﬁ) _|_ a_u("u + bvu” + cliL = (

b= Al)( + )\3)'!1!., 0 <t (5)

It is obvious that a = A\ + A2+ A3 > —7m2, b= —A1A2 — A2dz3 — A1 d3 > 0, = A1 AaA3 < 0.
Suppose that G;(t, s)(i = 1,2,3) is the Green’s function associated with

—u"” +X\u=0, u(0)=u(l)=0. (6)

We need the following lemmas.
Lemma 4 ([24]). Let w; = \/|A;|, then G;(t,s)(i = 1,2, 3) can be expressed as
sinh w;t sinhw; (1 — s)

3 ; ; _ w; sinh w,
(i) when Ai > 0,Gi(t, s) = sinhwt-stsinhw:(l —t)

, 0L5t<s<L1

. » <<t
w; sinh w;

t(l—s), 0<t<s<l1
s(1—t), 0<s<t<1
sinw;tsinw; (1 — s)

0 . ) - w; Sin wj
(iii)when —° < A; < 0,G(t, s) st l-— )

(ii) when \; =0, G;(t,s) = {

; BEL L8 <]

s 035t =1

w; Sin w;

Lemma 5 ([24]). Gi(t,s)(i = 1,2,3) has the following properties:
(i) Gi(t,s) > 0,¥t,s € (0,1);
(ii) Gi(t,s) < CiGi(s, s),Vt,s € [0,1];
(il) Gi(t, s) = 6:Gi(t,1)Gi(s, s),Vt,s € [0,1];
where C; =1,6; = =< if \; >0:C;i =16, =1, if \; = 0:C; = =L~ 8§ = w; sinw;, if —72 < A; < 0.

sinh w; sin w; !
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In what follows. we shall let D; = fﬂl Gi(s, s)ds.

Now, since

—u® 4 au® 4 b 4 cu= (—d—2 4+ )‘«l)(—d;2 + Az)(_d—E + Az)u
dt? dt? dt? ’
d? d? d?
= (_@”‘2)(_3?_5 +A1)(—a§+}t3)“:h(”a (7)

the solution of boundary value problem (3) can be expressed by

 J B
u(t)zfufo/0Gl(t,v)Gg(*u._s}Gg(:i,T)h(?‘)d?‘dsdv, t € [0,1]. (8)

Thus, for every given h € Y, the boundary value problem (3) has a unique solution u € C®° (0,1]
which is given by (8).

We now define a mapping T : C[0, 1] — C|0, 1] by

(Th)(t) = /ﬂl fnl fnl G1(t,v)G2(v, s)Gs(s, T)h(T)drdsdv, t € [0,1]. (9)

Throughout this article we shall denote T'h = u the unique solution of the linear boundary value
problem (3).

Lemma 6. T:Y — (X, |||, ) is linear and completely continuous where xy = A1 + Az, v = A1z
and ||T|| < Ds.

Proof. The proof of completely continuous is similar to the proof of Lemma 6 in [25], so we omit
it. Next we will show that ||T|| < D3. Assume that h € Y and u = Th is the solution the boundary
value problem (3). It is clear that the operator T' maps Y into X. Now for all Vh € Y.u = Th € X,
u(0) = u(1) = u”(0) = v (1) = u(0) = vY(1) = 0. Using (7) it is easy to see that

11
—u"" 4+ Nu = / ] G;(t,v)Gg(v, T)h(T)drdv, t€[0,1]. (10)
o Jo
and
1
u® — (A + M) + Nidju = / Gr(t,v)h(v)dv, te|0,1]. (11)
0

where 4,5,k =1,2,3 and i # j # k.

We will now show |]Th,||xy < Dy ||h||,,¥Yh € Y, where x = A1 + A3 = 0,v = A1A3 > 0. For this,
Yh € Yy, let w =Th, and by Lemma 5, © € X NY,. The equality (10) with the assumption Az < 0
implies that «” < 0. Similarly, the equality (11) with the assumptions A2 + A3 < 0 and A3 < 0 implies
that u(® > 0.

From (11) with x = Ay + A3 >0, v = M A3 >0 and u >0, u” <0, u®) >0 we immediately have

1
‘u.{‘”(t)‘ + x ()] + v u(t)] = u™® — (A + A3)u” + MAsu = ] Ga(t,v)h(v)dv, te€[0,1]. (12)
0

Forany he Y, let h= El —?;-g, Uy = Tﬁl, U = Tﬁg, where ﬁl,’ﬁg are the positive part and negative
part of h, respectively. Let u = Th, then u = u; — uz. From the above, we have u; > 0,u < O,uE‘L) >
0,72 =1,2, and the following equality holds:

1
|u£4}(t)‘+(}.1+}.3) ! (£)] + Mg |ui(t)] :/ Ga(t,v)hi(v)dv = Hh;, te[0,1), i=1,2. (13)
0
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So, from (13), we have
|u(‘” (t}\ + (A1 + A3) [ ()] 4+ Ai s Ju(t)] = |u§43(¢) —ul (t)‘

+(A1 + Ag) [uf (t) — wf ()] + M |ur (t) — ua(t)]
< ([ ®| + (a +20) [l (O] + AaAs [ (8)])
+ (JuP @] + O + A3 [ (0] + MAs ua (8)])
= Hhy + Hhy = H |h| < D |||h|llo = D2 [|A]lo -

Thus ||TR|, , < Dz ||k||y, and hence ||T']| < D,. &

Suppose that G(t, s) is the Green’s function of the linear boundary value problem

—¢"() + Ap(t) =0, ¢(0) = (1) =0. (14)

Then, the boundary value problem

—"(t) + Ap(t) = pg(t,u(t)), ¢(0)=p(1)=0,

can be solved by using Green’s function, namely,
1
p(t) = ,u/ G(t,s)g(s,u(s))ds, 0<t<1 (15)
0
where A > —2. Thus inserting (15) into the first equation of (2), we have
1
—u® 4+ A)u® + B(t)u"” + C(t)u = pu(t) f G(t, s)g(s,u(s))ds + f(t,u(t),u"(t)),
0

u(0) = u(l) = v”(0) = «”’(1) = «'Y(0) = (1) = 0. (16)

Throughout this paper, we assume additionaly that the continuous function g (¢, u) : (0,1)x[0, +oc) —
[0, +-00) satisfies

(Hs)

g(t,u) < g1(t)g2(u)

where g; : (0,1) — [0,+00) and g5 : [0, +00) — [0,+00) is continuous.
Moreover,

1
0< j G(s,8)g1(s)ds < +oo,
0
and for every R > 0, there exists Eg > (0 such that

ga(x) < kox, 0<z <R,

where go(z) # 0.
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MAIN RESULTS

Theorem 1. Assume that (H,),(Hz),(Hs) hold and L = Do K < 1. If

].- : f = . f t.'.'. % >F 2.
o ATy GRS = T

and

lim sup max sup (f(t,u,v)/|v|) < (1 —L)T/=?%,
|v|—cc te[0,1] ue[0,400)

then there exists a positive number g such that if 0 < g < 7 the boundary value problem (2) has
a positive solution.

Proof. We consider the existence of a positive solution of (16) (the function v € C°(0,1) N C*[0, 1]
is a positive solution of (16), if u > 0, t € [0,1], and u # 0). It is easy to see that (16) is equivalent to
the following boundary value problem:

—u® + au® 4 bu” 4 cu = — (A(t) — @) u'® — (B(t) - b)u"” — (C(t) — ¢) u

_;_ﬁ“(t)/u G(t,s)g(s,u(s))ds + f(t,u,u"). (17)

For any u € X, let
(Gu)(t) = — (A(t) — a) u D (t) — (B(t) = b)u"(t) — (C(t) — ) u(t).
The operator G : X — Y is linear. By Lemmas 2 and 3, Vu € X, ¢ € [0, 1], we have
[(Gu)(t)] < [-A({F) — B(t) —C(t) — (—a—b—c)] ||lull,

< K |ully < K [lufly,,

where K = max;cjg 1) [-A(t) + B(t) —C(t) —(—a+b—c)], x = A2+ A3 = 0, v = AA3 > 0. Hence

|Gully < K||uf,, . and so |[|G]| < K. Also u € C*0,1] N C%(0,1) is a solution of (17) iff u € X
satisfies u =T (Gu+ hy), where hy(t) = pu(t) fnl G(t,s)g(s,u(s))ds+ f(t,u,u"”) ie.

we X, (I-T7GQ) u="Th: (18)
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The operator I — TG maps X into X. From ||T|| < Dy together with ||G|| < K and condition

D;K < 1, and applying the operator spectra theorem, we find that (I — TG }*1 exists and bounded.
Let L= ID:;K.

Let H = (I — TG)~'T. Then (18) is equivalent to u = Hh,. By the Neumann expansion formula,
H can be expressed hy

B =76 4...4 @G ¢..) P=T4TET ...+ [T F4+..... (19)

The complete continuity of 7 with the continuity of (/—7'G)~! guarantees that the operator H : ¥ — X
is completely continuous.
Now Vh € Y., let u=Th, then u € X NY,, and u” <0, w® > 0. Thus we have

(Gu)(t) = — (A(t) —a)u™® — (B(t) —b)u”" — (C(t) —c)u >0, teo,1].

Hence
VheY,, (GTh)(t)>0, tel0,1] (20)

and so (T'G) (Th) (t) =T (GTh) (t) = 0,t € [0,1].
It is easy to see [25] that the following inequalities hold: Yh € Y,

_LL(Th)(t) > (HR) (1) > (Th) (t) t € [0,1]. (21)

moreover,
ICHM)lp < 77— TRy - (22)
For any u € Y, let Fu(t) = pu(t fu (s,u(s))ds + f(t,u,u”). From (H;), we have that

F:Y, — Y, is continuous. IL is easy to see that ue C*0,1] N C%(0,1) being a positive solution of
(16) is equivalent to u € Y, being a nonzero solution of

uw= HFu. (23)

Let @ = HF. Obviously, @ : Y, — Y, is completely continuous. We next show that the operator
has a nonzero fixed point in Y, . Let

P={ueX:ut) > 01— L)gr(t) fully, —u’(t) > 31(1— L)gs(8) [u”lly ¢ € [0,1]},
where g1 (t) = Z%;Gl(t, t). It is easy to see that P is a cone in Y. Now we show QP C P.

For Vu € P, let hy = Fu, then hy; € Y. From (21), (Qu)(t) = (HFu)(t) = (TFu)(t), t e [0,1].
From Lemma 5 for all u € P, we have

(TFu)(t) < len /n /U Gi(v,v)Ga(v, s)G3(s, 7)(Fu)(r)drdsdv, V¥t e [0,1].

Thus Lo
/ / / G1(v,v)Ga(v, 8)Gs(s, 7)(Fu)(7)drdsdv > '3 T Ful, - (24)
o Jo Jo &)

Also from (22) and (24) we have

(TFu) (t) 251(3'1(1‘.,1‘.}/0 /ﬂ /0 G1(v,v)Ga(v, s)Gs(s, 7)(Fu)(7)drdsdv

zélGl(t,tjp > 5,Ga(t, z)— 1—L)||Qull,. Ytelo1].

We have a similar type inequality for (T'Fu)”(t). Hence QP C P.
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From lim inf min  inf  (f(¢,u,v) /|v|) > T'/x%, we can choose & > 0 such that
|| — 0+ te[0,1] uel0,+oc)

lim inf mi inf tu,v) /Jv]) >D/x2 +e.
G v e W G} = e e

Then 3r > 0 such that f(t,z,y) > (T/x2+¢) |y, t€[0,1],0< |y| <r.Let Q, ={u e P: ||u"|, < r}.
For any u € 09,, we have |[u"|, = r, 0 < —u"(t) < r,t € [0,1], and so f(t,u(t),u"(t)) >
(D/a? +¢) (—u”(t)), t € (0,1). By —u"(t) > & |[u”||, = or.t € [L, 3], where § = 6;(1—L) min, e[1.4] aq1(t),
it follows that

). 0) > (O/ +6) (<" (0) > (0/n +e) o, te1.5].

Now we prove inf,caq, ||[(Qu)”’|lg > 0. For any u € ., by (21) we have

1Qu)"lly > 1Qull, > (Qu) (;) > (TFu) (;)

1 1 pl 1 1
:/ / f Gl(§1'iJ)G2(’U,Z)G3(Z,T) [;m(rjf G(r,8)g(s,u(s))ds + f(r,u(r),u” (7‘))] drdzdv
o Jo Jo 0

1
5 (/7?4 €) 6rbibabs >0,  (25)

> (I‘/n‘z +¢€) 6:*"/

f / G1(=,v)Ga(v, 2)G3(z, 7)drdzdv >
where b; = min1 ¢; .3 Gi(t, s). Therefore, infycaq, |[(Qu)”[l; > 0.

Next we prove Vu € 912,.,0 < & < 1, Qu # ku. Suppose the contrary, that Juy € 99,,0 < kg < 1,
such that Qug = kpug. From (21) we get

1
o () = Kotio(t) = (Quo) (£) = (TFug) (£) = T (,uug(t) /ﬂ G(t, 8)9(s, o (8))ds + F(t, uo(t), ul (f)))

1
=1 (;.mg(t)/u G(tjs)g(s,ug(s))ds) + T (f(t,uo(t),ug (t) =T (f(t, uo(t),ug (t)), te][0,1].
Let vo(t) = T (f(t,uo(t), ug (t)) . Then ug(t) > vo(t) and vo(t) satisfies the BVP:
heife augl) +bvl +cvg = ft,ug(t),up (t)), 0<t<1. (26)

Multiplying (26) by sin(wt) and integrating over [0, 1] together with vg(0) = vg(1) = v (0) = vy (1) =
-vé4)({)) = 't.![(]4)(1) =0, ug(t) > vo(t), we get

1
I‘] sin(ws)ug(s)ds > I‘f
0 0

recall I' = 7% + an* — bx? + ¢ is the first eigenvalue of the problem —u(®) + au™ + bu” + cu = Au,
u(0) = u(1) = u”(0) = w”(1) = u?(0) = «¥ (1) = 0 and sin(7t) is an eigenfunction and note that we
have equality in Eq. (27) since if we integrate by parts we have

1

sin(ms)vg(s)ds = /1 sin(ms) f (s, ug(s), ug (s))ds; (27)
0

1

1
/ sin(ms) f(s.up(s), uqg(s))ds :f sin(7s) (—J:_}éﬁ)(s) —l—rw (9} + bug (s) +0u0(3))

1

1
= / (7° + an® —br® + ¢) sinwsvg(s)ds+ {sin TS (—1-'((]5)(5) + 08 (s) (7% +a) — vy (s) (x* +an? — !}))L
0

+ [cos('ﬂrs) ('mrn )(9) + g (s) (72 + am) +vo(s) (7° + an® — bﬂ‘))]:

1
= Ff sin(mws)vg(s)ds
0
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From f(t,uo(t),uy(t)) > (O/x2 +¢) (—ufj(t)), t € (0,1), we have

1 1 1
I‘/O sin(ms)ug(s)ds > (T'/7* + E}/ﬂ sin(7s)(—uf)(s)ds = (T + Sﬁg)‘/o‘ sin(ms)ug(s)ds. (28)

Since fﬂl sin wsug(s)ds > 0, we have I' > T + en?, a contradiction.
The above considerations together with Lemma 1 guarantee that i (Q,Q,., P) = 0.

From limy,|, 4 o SUp Maxse(n,1] SUPye(o,400) ([t u,0) /|v]) < (1 - L) ['/x?, letting N = (1—L)T,
we choose 0 < & < N/7x? such that lim),|_, . SUp maxeo,1] SUPy,efo,+00) (F(E: 2,0) []V]) < (N/n%—¢).
Then 3Ry > 0, for |y| > Ro, f(t,z,y) < (N/72 —¢)|yl, t € [0,1].2 € [0,+00). Let us introduce the
following notation: M = sup(; .. |y1)e(0,1]x [0, ko x [0, o] | (£:%:¥) . Then

ftz,y) < (N/m*—e) yl+M, vte[0,1], z,[yl€[0,00).
Take R > max{r, Ry, %} Put Qg ={u e P: ||u"|, < R}. We prove Yu € 0Qg, v > 1, vu # Qu.
Assume on the contrary that Jivg > 1, ug € 90g, vyug = Qug. From (21) we have

ug(t} E Ug'un(f) = (ng) (f) = (HF'M-U) (t) S ﬁ(TFU,Q)(f)

- L7 (#’Ho("f) fn G(t, 5)g(s, uo(s))ds + (b, uo(t), ul (r.)))

1

1
= mT (pug(t)/ﬂ G(t, s}g(s.uo(s))d.-;) + iT (f(t,uo (), ug(t)).

Let vo(t) = (T Fup) (t). Then ug(t) < 125 vo(t) satisfies the BVP:
1
—-a;éf') —|—a-véd) + buly + cvg = ;z.uo(t)/ G(t,5)g(s,ug(s))ds + f(t.up (1) ,ug(t)), 0<t <Ll (29)
0
Multiplying (29) by sin(wt) and integrating over [0, 1] together with vo(0) = vo(1) = v5(0) = v5 (1) =
1)((,4)({)) = 1:&4)(1) =0, ug(t) < 2rvo(t), we get
1 1 1
I‘f vp(t) sin(mt)dt :/ sin(ﬁrt)(pfu.g(t)f G(t,8)g(s,uo(s))ds + f(t,uo (t),ug(t)))dt
0 0 0
1 1 1
= / sin(arrt);mn(t)] G(t,s)g(s,ug(s))dsdt —|—/ sin(mt) f(t, ug (t) , ug (t))dt
0 0 0
i 1 N 1 1
< ,u,f s;in(rr!]-u.g(t)/ G(t,s)g(s,*uo(s))d3dt+(—2 = &.‘) / (—uf{(:‘.))sill(ﬂt)dt—l—ﬂ-{/ sin(wt)dt. (30)
0 0 T 0 0

From (30), and using G(t,s) < CG(s,s),Vt,s € [0.1] and g(s,uo(s)) < g1(8)g2(ua(s)) < g1 (8)kauo(s).

we have

anl ug(t) sin(zwt)dt < ,u,/ol sin(?rt)ug(t)/nl G(t,5)g1(5)g2(uo(s))dsdt

Al (% — s) /ﬂl(—u{{(t))sin(’rrt)dt Es Mrfol sin(7t)dt

1 1 1
= #-Ckg/ sin(m‘)/ G(s.s)g1(s)dsdt ||’Ll[|”g + M’/ sin(7t)dt
0 0 0

1

+N /01 ug(t) sin(wt)dt — E./o (—ug(t)) sin(mrt)dt.
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Hence, using ||lugl|q < |lug ||, . we find

1 1 1
M’/ sin(7t)dt +pC’k2f sin(zwt)dt | G(s,s)gi(s)ds ||uH||g
0 0 0

il

1
> E‘/ (—ug(t)) sin(mt)dt > 55/ sin(7t)dt ||ug || ,
0 1

ie.

2 2~ " \@ i
M= + pC =k [Jugllg > de=— llug|ly

where k = fﬂl G(s,8)g1(s)ds > 0. Thus R = ||lug||,, and we have

2 €
M + uCkokR? > —R,
H 2 e \/ﬁ

hence 5 i
Bt R 5
pCkka/2 uCkksy
Solving
ae M
R% — ——R+ — =0 (31)
uChkan/2 puChks
we find
5.;_(5e)_4m M
R, — pCkvV2 uClkav2 uChks R, — pcum/' ;.-,mkz nChls
1= 5 : 2 =
i 2
where 0 < R; < Rs if the discriminant D = (~—°§——) —4—==- >0, ie. 0< p < . Let
nChkka /2 nCkko n. azc
= ST{E':;;T Now, we can choose p > 0, such that D > 0, Rg < Rz and r < R, (it is alwayb possible).
For exa.mpll,é, if we take
\/ —4 M
Ro < Ry = p{“ksz Iu.(,kkg uChks (32)
then we can rewrite (32) in the following form:
de de 2 M
Ckkav/2 Ckkav/2 Ckkn

It is easy to see that we can choose u such that (32) is fulfilled, because if g — 0+, then left side of (33)
will tend to zero and the right side of (33) will tend to a finite positive number. Now because there
exits a positive number ps such that (32) is fulfilled. Similarly we can see that r < Ry is also fulfilled
by choosing a suitable pug3.

We recall that R > max{r, Ro. 2‘” } and for fixed R, let us introduce the following notation:
0eR 1

R . L
m=Crm — Mo,

Since R > —‘/%E"'i we have M — ‘/_H < 0. Using (31), it is easy to see that if 0 < g < pg, then

RR-—% p+ M _pim-%p_1_<o
uCkkav2  pClky V2 uCkks
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which is contradiction to
R de M

— R+ -
uCkky/2 uCkks

Let 7z = min {1, p2, 43, 4} . From Lemma 1 we have i (Q, Q2r, P) = 1, and hence i (Q, Q,:g\ﬁ,-, P] =
1. Thus the boundary value problem (16) has a positive solution if 0 < p <. 1

> 0.

Theorem 2. Assume that (Hy),(H2),(H3) hold and L = D2 K < 1. If

lim inf min inf (¢, w,0) /|v]) > T/x2,
|v| =40 tE[Dfl]uEIO,+oo](f( )/| |) /

and

lim sup max sup (f(t,u,v)/|v|) < (1 —L)T/x?,
lo]=0+  te[0,1] yeo,400)

then there exists a positive number fi such that if 0 < u < @i the boundary value problem (2) has
a positive solution.

Proof. From lim,_,o4 SUp max;c(o,1) SUPyeo,+oc) (f(t, 4, 0) /|v]) < — L)T/=?, ]etting N =
(1-L)T, we can choose 0 < & < N/n? such that lim,|_,o4 sup max,co 1 bupue[u o (f(t,u,v) [|v]) <
N/w? —e. Thus Ir > 0,0 < |y| <r, z € [0,+00), 0 < t < 1 such that f(t,z,y) < (N/7* —¢) |y|. Put
Q. ={ueP:|u"|, <r}. Now Vu € 3, f(t,u(t),u”(t)) < (N/x* —¢) (—u"(t)), t € [0,1]. We claim
that Vu € 9Q,, 1 < v, Qu # vu. Suppose the contrary, that Jug € 92, 1 < vy, Quo = vpup. From (21),
we have (Quo) () < 121 (TFuo) (1), t € [0,1]. Letting vo = T Fug, then

1 1

ug(t) < voup(t) = (Qug) (1) < 1-1I (TFug) (t) = -1

vo(t) (34)

and wvg(t) satisfies the following BVP:

1
"'4’0 6) —|—av(4) + by + cvg = pug(t)/ G(t,s)g(s,ug(s))ds + f(t,ug(t),uy (t)), 0<t<1. (35)
0

Multiplying (35) by sin(mt) and integrating on [0, 1] together with vy(0) = vp(1) = v (0) = v} (1) =
'U{(,:U(U) = 1.!((]4)( 1) =0, up(t) < =g vo(t), we get

I‘]ﬂ siu(*:rt)’vg(t)dt:fﬂ sin(7t) (o t)f G(t,5)g(s, up(s))ds + f(t,ue(t),ug (t)))dt

= /1 sin(7t ) puo(t) l G(t,s)g(s,up(s))dsdt + /l sin(wt) f(t, uo(t), ug (t))dt
0 0 0

and so using (34) and G(t,s) < CG(s,s),Vt,s € [0,1], we have
1 1
N/ ug(t) sin(wt)dt < F/ vo(t) sin(7t)dt
0 0

< uC ]ﬂlluo(f)sin(wt)dt fol G(s,s)gl(s)d.‘;i:g luolly + (% — E) fol(—ug(t))sin(qrt)dt

1 1
= pC-‘/ ug(t) sin(rt)dtkk, lugllo + (N — en?) f wy () sin(wt)dt. (36)
0 0

Since fnl ug(t) sinwidt > 0, letting k = fnl G(s,s)ds, we have
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N < uCrkks + N —en”. (37)
Thus (37) is a contradiction if lqurkEg < en?. In fact, then there is a positive number 0 < 7 = %&—
rChkks

so that if 0 < g <7 then (37) is a contradiction. Therefore i (Q,,, P) = 1.
From limjy|—; 40 inf mingeo,1) infue[o,400) (f(£, u,v) /|v]) > ['/w2, we choose € > 0 with

lim inf min  inf t.u,v) [lv]) >T/n2 +«.
[u|—+oo t€[0,1] u€[0.400) (f(t, u,v) /|v]) /

Then 3Ry > 0 such that f(t,z,y) > (D/a2+¢)|y| for |y] > Ro. 0 <t < 1, and z € [0, +00). It is

easy to see that AM > 0 such that f(¢,z,y) > (I‘/Tr2 +¢) |yl — M, for t € [0,1],2,|y| € [0,00) . Take
R > max{v’, Hao ifg‘i} and put Qp = {ue P:||u”|, < R}. We show that inf, a0, [|(Qu)”|, > 0.
and Yu € 0Qg, 0 < v < 1, Qu # vu.

For any u € 9Qg, —u"(t) > &||u"||,
(T/72 +¢) (—u"(t)) = (T/n% +¢)0R. t € L,

R > Ro, t € [1,3], and we have f(¢, u(t),u”(t)) >
g] . Thus by (21) the following inequality holds:

ID-|'—'

1Qu)"ly > l1Qully > (Qu) (1) > (TFu)( )

—j / / G'l v)Ga(v, 2)G3(z,7) [,uu f G(T,8)g(s,u(s))ds + f(r,u(7),u" (7)) | drdzdv

Zf f ] Gl(l,fu)Gz(v,z)Gg(z,T)f('r._u(T_)Tu"('r)]d?'dzdw
> (T/n* +¢ f / ] G'1 —,v)Ga(v, 8)G3(s, 7)(—u" (7)drdsdv > %(F/?rz—ka) dRb1babs > 0, (38)

where b; = min; ; ;s Gi(t, s). Therefore, inf,can, [|(Qu)”|ly > 0.

Suppose the contrary, Jug € IQg, 0 < 1y < 1, such that Qug = vyug. From (21) we find

ug(t) = voug(t) = (Qug) (t) = (TFug) (t) =T (,u,uo(t)/ﬂ G(t,s)g(s,up(s))ds + f(t,uo (1), uf,'(.‘)))

1
=T (,wu,n(t) / G(t, s)g(s, u.g(s))d’s) + T (f(t,uo(t),ug(t)) > T (f(t,uo(t),ug(t)), tel0,1].
Let vg = T (f(t,ug (t),u"(t)). Then ug(t) > vo(t) and vo(t) satisfies the boundary value problem:
—1:( + ar,r(‘” +buf +cvo = f(t,uo (t),uf(t)), 0<t<1. (39)

Multiplying (39) by sin(mt) and integrating over [0, 1] together with vy(0) = vo(1) = vg(0) = v (1) =
1}04)({)) = *u((]‘l}(l) =0, up(t) > vo(t), we get

Ffo sin(7s)ug(s)ds >I‘/ﬂ sin(7s)vg(s)ds —fn sin(ws) f(s,ug(s),u” (s))ds. (40)
From f(t,uo(t),uq(t)) > (O/7® +€) (—ug(t)) — M, t € (0,1), we have

F‘/: sin(ms)ug(s)ds > F/ﬁl sin(ms)up(s)ds + e/ﬂl sin(7s)(—ug (s))ds — ﬂ-i’/ﬂl sin(ms)ds. (41)

From (41) it follows that
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1 1 i
;'U/ sin(ws)ds > 5‘/ sin(ws)(—ug(s)ds > €6 ”“H”n/ sin(ms)ds. (42)
0 1

0 i
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