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ABSTRACT 
 

The high rate of mortality caused by cancer diseases has attracted much attention from various disciplines to come up with better preventive measures and 
treatment strategies that will lessen cancer development and increase survival rate. Several comprehensive mathematical analyses were carried out using the 
well-known Banach fixed point theorem/contracting principle to study the behaviour and stability of the cancer disease models. With these models a lot of 
numerical estimates of biological knowledge of the parameters have been obtained, a number of phenomena interpreted, and predictions were made in order to 
gain further knowledge of cancer development and possible treatment. In this study, simulation of the cancer mathematical model using Caputo-Frabrizio 
fractional derivative to see the effects of the combined treatment of cancer disease by stem cells and chemotherapy were performed. From the graphical 
representation of results presented one can clearly see the effects of the application of the stem cells and the chemotherapy involved in the treatment of cancer 
tumor. In the past, most of the cancer treatment were done by conventional chemotherapy, radiotherapy, hormone therapy, molecularly targeted therapies and 
surgery which were used either singly or in combination with one another or other therapies and all played vital role except the side effects that these therapies 
incur in the normal tissues and organs. Thus, from the recent research carried out by some researchers, it is now clear that in many cases they do not represent 
complete cure. Hence, the need to address not only the preventative measures of cancer disease, but also more successful treatment can be achieved using 
combination of stem cells and chemotherapy. 
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INTRODUCTION 
 
Cancer is a no communicable disease but destroys life and causes 
death worldwide, where new cases and death from the disease keep 
rising despite the advancement in science and technology [1]. 
Numerous types of cancer exist in both male and female genders 
worldwide depending on the geographical locations, atmosphere and 
nature of the intake of that location [2]. The common among them 
include breast and cervical cancer which are common cancers in the 
world and the most frequent cancer among women, prostate cancer 
and liver cancer are common in men, colorectal cancer which is 
common cancer in men and in women globally [3,4]. Some of the 
common signs and symptoms of cancer may include pyrexia, ail, 
tiredness, changes in skin appearance (redness, sores that would not 
heal, jaundice, darkening), unplanned weight loss or weight gain, 
lumps or tumors (mass), inconvenient swallowing, changes and 
difficulties with bowel or bladder function, never – ceasing cough or 
throatiness, curtly of breath, chest pains, bleeding and discharges that 
can’t be explained [5, 6].  Cell mutations and other factors that assist 
in damaging the DNA eventually leads to cancer [7], and these factors 
include air pollution, smoking, heavy alcohol drinking, eating a poor 
diet, obesity, exposure to chemicals, and other toxins [8]. And if these 
triggering factors are prevented it will go a long way in minimizing the 
risk of effecting with cancer. Chemotherapy, immunotherapy, 
radiotherapy and surgery are well known clinical procedures used in  
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treating or managing cancer which depend upon the patient's 
condition, location of the tumor, and the stage of cancer. Evidence 
has shown that the combination of more than one therapies for the 
treatment of advanced-stage cancer is a veritable option because 
therapies target different methods of tumor cell survival and their 
combined effect is highly desirable [9]. It has been for decades that 
biological processes are being modeled mathematically based on the 
advances in technology and availability of related data which provide 
means of a better understanding of the processes. Different kinds of 
differentials equation have served as a tool in modeling hematological 
processes in which [10] developed a reduced system of delay 
differential equation from an aged structured partial differential 
equation model that describe a better transition between chronic and 
acute phases of myleogenous leukemia by incorporating self – 
renewing population and non-constant cell cycle durations, but the 
model does not incorporate feedback controls on apoptosis which 
seems to be important for myelogenous leukemia appearance. For 
better understanding of the dynamic of acute leukemia and in 
particular find theoretical conditions for the efficient drug delivery, [11] 
have investigated and obtained a nonlinear system with distributed 
delays mathematical model of leukemia cells dynamic. [12] have 
added on Adimy et al., (2008) and [13] model of cell dynamic where 
they separate the cell development phase into a structure of 
numerous sub-compartments by showing the overall dynamical 
system of the equation can be condensed to two coupled nonlinear 
equations with four internal sub-systems involving distributed delays. 
[14] propose a couple of PDE model that was transformed into a non-
linear distributed delay system for healthy and cancerous cell 
dynamics in Acute Myeloid Leukemia. [15] developed a mathematical 
model system of two age-structured partial differential equations 
which was reduced to a delay differential-difference system by 



integrating system over age and using the characteristics method that 
helps in understanding the uncontrolled proliferation of blood cells in 
some hematological disorders. Moreover, [16] have developed a 
multi-stage acute myeloid leukemia model by converting the PDE 
model to a nonlinear time-delay model through the construction of 
linear Lyapunov functionals which guarantee global exponential 
stability with a given decay rate. [17] developed and analyze a 
nonlinear time-delay mathematical model that was coupled to a 
differential-difference system that describes the coexistence between 
the population of an ordinary and leukemic cell. The model explains 
the invasion of the bone marrow by unhealthy cells that are 
characterized by fast self – renewing dynamics. Many authors, have 
improved on  [17] by modifying the coupling manner of the healthy 
and mutated cells to investigate some biological concerns on cancer 
stem cells dormancy. [18] and [19] have re-explore the steadiness of 
“0” and positive equilibriums for both healthy and unhealthy 
hematopoiesis via Lyapunov – Krasovskii Functional (LKFs) and 
Quadratic Functional respectively. To add to the existing 
mathematical model that was aimed at the improvement in cancer 
treatment [19] developed and explored an age-structured model that 
describes the coexistence between mutated and ordinary stem cells 
by transforming the PDE into a nonlinear time-delay system governing 
the dynamics of healthy cells, coupled to a nonlinear differential-
difference system describing dynamics of unhealthy cells to achieve; 
the case where therapy aims to eradicate cancer cells while 
preserving healthy cells; a less demanding, more realistic scenario 
that consists in maintaining healthy and unhealthy cells in a controlled 
stable steady state (cancer dormancy). Mathematical modeling of 
cancer treatment using radiotherapy has also gained a lot of attention 
which includes but not limited to the work of [20] where they 
developed a Lokta – Volterra Competitive model that analyses the 
population dynamic and considers the interaction between the healthy 
and mutated cell as they compete for body resources. The model 
considers only the cancer cell during the radiotherapy. [21] have 
improved on [20] by adding perturbation theory in order to consider 
the effect of radiotherapy on the healthy cell during the radiotherapy 
protocol by taking four different modes of treatment. [22] have used 
Caputo – Fabrizio Fractional Derivative to integrate the radiotherapy 
model of cancer treatment which proved that fractional derivative 
gives important information about the process. [23] have added 
Hadamard Fractional Derivation to the radiotherapy cancer treatment 
model which proved to have a unique positive solution. [24] has 
improved on the previous classical work of radiotherapy cancer 
treatment by taking into consideration the status of the treatments and 
predict the outcome of the other treatment plans through incorporating 
Caputo Fractional Derivative in the previous cancer treatment models. 
Since most types of cancer disease are resistant to treatment, 
therefore, a combination of more than one therapeutic option has 
gained much attention from many researchers such as [25] that 
developed a mathematical model of tumor-immune interactions with 
chemotherapy by exploring one quadratic control and one linear 
control on the coupled system of ordinary differential equations toward 
the determination of theoretically improved approaches to treating a 
cancer patient. [26] used the stability theory of differential equations to 
propose and analyzed a nonlinear mathematical model for the study 
of the interaction between tumor cells and oncolytic viruses. [27] have 
developed a mathematical model of ordinary differential equations of 
an immune response to tumor growth which gets affected by 
treatments chemotherapy, interleukin-2, and adoptive immunotherapy. 
[28] propose a new mathematical model which explains the 
combination of immunotherapy with chemotherapy as very effective in 
controlling tumor growth thereby better treatment effect can be 
achieved. [29] has developed a new and a combined cancer 
treatment mathematical model with an ordinary differential equation 
for stem cell therapy and chemotherapy with the hope to cure cancer 

disease and improve patient’s quality of life. However, as hence the 
thought to extend [29] to fractional order is a novel work to be carried 
out.  
 

Overview of the Existing Model 
 
Following the existing mathematical model by [29] that explain the 
relationship and the interactions between the stem cells and 
chemotherapy for the treatment of cancer. The model was able to 
explore how chemotherapy affect the stem cells, the effect or cells 
and the tumor cells. It also explained clearly the interactions between 
the effect or cells and the tumor cells as both component fights 
against one another. Hence the stem cell that became effect or cells 
fight the tumor cells by improving the immune system of the cancer 
patient while chemotherapy kills the infected cells and also the 
healthy cells. Thus, the model equations are 
 

 

   

 tVM
dt

dM

TMkEpTbTr
dt

dT

EMTp
S

ESp
E

dt

dE

MSkS
dt

dS

T

s












2

3

2
1

1

1

)1(







                  (1a) 

 

where  tS  tE  tT , and  tM  are the concentration of stem 

cells, effect or cells, tumor cells, and chemotherapy concentration 
drug with the initial conditions   ,0 0SS    ,0 0EE 

  ,0 0TT  and   00 M if 00 V .  t0  
 

Table 1: Model Parameters and their description 
 

Parameter Description Value 

S  
Stem Cells 1 

E  
Effector Cells 1 

T  
Tumor Cells 1 

1  The Decay Rate of Concentration of the Stem Cells -
0.02825 

  
Rate of Produced the Effector Cells 0.17 

  The Natural Death Rate of the Effector Cells 0.03 

b 
Carrying Capacity of the Tumor Cells 10-9 

sk  Fractional Stem Cells killed by Chemotherapy 1 

1p  
Maximum Proliferation Rate of the Effector Cells 0.1245 

r  Tumor Growth Rate 0.18 

2p  
Decay Rate of the Effector Cells killed by Tumor Cells and 
Chemotherapy 

1 

Tk  
Fractional Tumor Cells killed by Chemotherapy 0.9 

3p  
Decay Rate of the Tumor Cells killed by the Effector Cells 0.9 

2  
Decay Rate of Chemotherapy Drug 6.4 

)(tV  The time dependent external influx of Chemotherapy Drug 1 

 

The extended Model 
 

The extended model is formulated by integrating the Caputo Fabrizio 
fractional derivative following the methods of [30],[31], [32] and [33] 
where some parameters in the system model are modified to ensure 
that the right- and left-hand sides of the resultant fractional equations 
possess the same dimensions. Consequently, (1a) becomes 
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along with the initial conditions   ,0 0SS    ,0 0EE 

  ,0 0TT  and   00 M if 00 V , where 
qCF D denote the 

fractional derivative operator,that is, the Caputo-Fabrizio type  with 

the fractional order q . It is worth noting that, as 1q , the 

fractional system (1b) tends to the classic integer model (1a).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The rationale for Caputo – Fabrizio is their advantage over the 
Reimann – Liouville fractional operator. The Riemann–Liouville 
fractional-order differential equations required to have initial 
conditions in terms of fractional order derivatives which, as commonly 
known, have no universally accepted physical interpretations and 
furthermore; derivative of a constant function under this fractional 
operator is not zero. While the operators Caputo, the Caputo–
Fabrizio, and Atangana–Baleanu–Caputo which, by their very 
definitions, do not have issues of fractional-order initial conditions and 
their derivatives for a constant function is also zero [34]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Existence and Uniqueness of solution for the Model 
 

Consider the first order ordinary differential equation  

),( ytf
dt

dy
   00 )( yty                                         (2) 

If ),( ytf is continues near ),( 00 yt then the solution to (2) exist, so also if ),( ytf and 
y

f




are both continues near ),( 00 yt  then 

(2) is said to have a unique solution. 
 
Definition: Lipschitz Condition 
 

It is said that f  satisfies a Lipschitz condition on a set D if there exists a constant 0L such that vuLvtfutf  ),(),(  for 

all Dvtut )},(),,{( and L  is a Lipschitz constant. Lipschitz conditions are connected with contractive mapping which have important 

application to the existence, uniqueness and approximation of equation – including ordinary differential equations [35]. 
 
Definition: Fixed Point  
 

A fixed point is kind of 0x which satisfies 00 )( xxT  , that is 0x does not move by the transformation T  

 
Definition: Contraction Mapping 
 

If ),( dx be nonempty complete metric space, ,: xxT   for all Xyx , ∃ � ∈ [0,1) such that ),())(),(( yxqdyTxTd  . 

Then T is a contraction mapping. 
 
Definition: Banach Fixed Point Theorem 
 

Let ),( dx be nonempty metric space with ,: xxT   is a contraction there exist a unique fixed point 0x such that 00 )( xxT  . 

Banach contraction principle can be applied to derive the existence and uniqueness of solution to initial value problems provided that the 
function has satisfied Lipschitz condition. 

Now let X be complete normed linear space (Banach Space) and xxT : is called contraction if yxTyTx    for all 

Xyx , for some 1 . 
 

[34] have found the existence and uniqueness of solution through a fixed-point theory by applying fractional operation as 
 

      0ftftfDI qCFqCF                                         (3) 

 

     

     

        
      tVMIMtM

TMkEpTTbrITtT

EMTp
S

ESp
EIEtE

MSkSIStS

qq
t

CF

q
T

qqqq
t

CF

q
q

qqq
t

CF

q
s

qq
t

CF




















2

3

2
1

1

0

10

)1(
0

0







                                                                             (4)  

 

Applying the ideas presented in [36] we get 
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Applying the ideas presented in [36] we get 
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For simplicity; let 
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Theorem: The kernels 321 ,, bbb and 4b assures the Lipschitz condition and contraction if the following conditions respectively fulfils  
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Proof: Taking two functions S and 1S , and start from 1b and proceeds as follows 
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Applying norm on (12), we get 
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This implies that Lipschitz condition is satisfied for 1b . Moreover (14) implies that it is also a contraction. 

Similarly, 
 

   
 

 
















































)()()(
)1)((

)()(
)(

)()()(
)1)((

)()(
)(

,,

12
11

1

2
1

122

tEtMtTp
tS

tStEp
tE

tEtMtTp
tS

tStEp
tE

EtbEtb
q

q
qq

q
q

qq




                                                            (15) 

 

Simplifying (15) we get 
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Applying norms on (16) we then have 
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This implies that Lipschitz condition is satisfied for 2b . Moreover (21) implies that it is also a contraction. 
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Applying norm on (23) 
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This implies that Lipschitz condition is satisfied for 3b . Moreover (29) implies that it is also a contraction. 

Finally, 
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Taking the norm on (32) 
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where 
qc 24   

This implies that Lipschitz condition is satisfied for 4b . Moreover (34) implies that it is also a contraction. 
 

Simplifying (34) further, by replacing the kernels we get 
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Next the recursive formula is presented as 
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The succeeding terms difference is evaluated as 
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Taking the norm of (38) 
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Simplifying (39) further, we get 
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Numerical Simulations 
 
We now present the results of the simulations of the mathematical 
model using Caputo – Fabrizio fractional order derivative for cancer 
treatment by stem cells and chemotherapy. In the simulation we use 
the values of the parameters in table 1 above and the initial 
conditions, as given in the table. 
 

 
 

Figure 1a: Solution using FLMMs at 1  
 

 
 

Figure 1b: Solution by RKM 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2a: Solution using RKM at t  = [0, 5] 
 

 
 

Figure 2b: Solution by FLMMs at t  = [0, 5] 
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Hence we have 
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Hence based on the above analysis there exist and a unique solution to (1b). 

 

International Journal of Innovation Scientific Research and Review, Vol. 04, Issue 03, pp.2494-2504 March, 2022                                                                                        2500 



 
 

Figure 3a: Solution by RKM at t  = [0, 15] 
 

 
 

Figure 3b: Solution by FLMMs at t  = [0, 15] 

 

 
 

Figure 4a: Solution by RKM at t  = [0, 20] 
 

 
 

Figure 4b: Solution by FLMMs at t  = [0, 20] 

 
 

Figure 5a: Solution using RKM at t  = [0, 50] 
 

 
 

Figure 5b: Solution by FLMMs at t  = [0, 50] 
 

 
 

Figure 6a: Concentration of Stem Cell by RKM 
 

 
 

Figure 6b: Concentration of Stem Cell by FLMMs 
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Figure 7a: Concentration of Effector Cell by RKM 
 

 
 

Figure 7b:Concentration Effector Cell by FLMMs 
 

 
 

Figure 8a: Concentration of Tumor Cell by RKM 
 

 
 

Figure 8b: Concentration of Tumor Cell by FLMMs 
 

 
 
 
 
 
 
 
 
 
 
 

 

Figure 9a: Concentration of Chemotherapy Drug by RKM 
 

 
 

Figure 9b: Concentration of Chemotherapy drug by FLMMs 

 
CONCLUSION 
 
The numerical simulation of the fractional order mathematical model 
for cancer treatment by stem cells and chemotherapy has been 
carried out through a reliable and accurate numerical codes and 
Matlab routine that performed effectively. In this section, we compare 

the results obtained by FLMMs at the value of 1 and results of 
the classical method obtained by the famous in-built Runge Kutta 
method of order four as presented in figure 1a and figure 1b 
respectively and the two results are in good agreement. Based on the 
results presented, we conclude that FLMMs is reliable for solving any 
system of equation with high level of accuracy. Based on the figures 
obtained in this section, there is no any significance difference in the 
results obtained at different time interval of the concentration of cells 
by both the FLMMs and the classical RKM of order four. The 
numerical simulation performed in this section is by varying the 
fractional order because fractional order model offers realistic 
information about the dynamic of the model. Thus, this section also 
highlights the effect of the memory which is the main aim of fractional 
derivatives, that is, keeping track of history of diseases. Based on the 
results obtained we conclude that our results are reliable. Hence this 
work has contributed to research activities in the field of cancer 
treatment with stem cells and chemotherapy. 
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