
International Journal of Innovation Scientific Research and Review

Vol. 04, Issue, 07, pp.3094-3097, July 2022

Available online at http://www.journalijisr.com

SJIF Impact Factor 4.95

Research Article

ISSN: 2582-6131

COMPARISON OF A* ALGORITHM AND GREEDY BEST SEARCH IN SEARCHING FIFTEEN PUZZLE
SOLUTION

* Charisma Tubagus Setyobudhi

Department of Computer Science, Faculty of Technology and Engineering, Diponegoro University,Jl. Prof. Soedharto SH, Tembalang, Semarang-Indonesia.

Received 22th May 2022; Accepted 23th June 2022; Published online 30th July 2022

ABSTRACT

Artificial Intelligence itself is a broad subject. The application of artificial intelligence in daily routine is various. One of the usages of artificial intelligence is finding
the shortest route on a map. In general, the algorithm which can be used for finding the shortest route is A*. A* is often used in finding the shortest route in a
graph or map. Generally speaking, A* is used to make a game, especially for finding the shortest route of an intelligent agent inside it. In this paper, the finding
solution of puzzle game using A* and Greedy Best First Search is to be discussed. The puzzle game which is discussed is the Fifteen Puzzle. This research
compares the two algorithms used, A* and Greedy Best First Search. This research shows that Greedy Best First Search gives a slightly faster solution than A*.

Keywords: A*, Artificial Intelligence, Fifteen Puzzle, Greedy Best First Search.

INTRODUCTION

Artificial Intelligence and Searching algorithms are needed in
computer programming.1 Searching algorithms can solve many
cases. The searching algorithm can be classified into two types which
are BFS (Breadth-First Search) and DFS (Depth First Search).
Theoretically, those two searching algorithms are very different in
finding mechanisms. Generally, these two algorithms can be used for
uninformed searches to find the solution. However, some algorithms
can be used if the problem has cost information. For example, in the
case of finding the shortest path from one place to another place, we
can use the Dijkstra algorithm and A*. A* algorithm is rapid in finding
the shortest route.2 Dijkstra Algorithm and A* are very different in
calculating the cost of searching. In the Dijkstra algorithm, there is no
heuristic calculation, and on the other hand, A* uses heuristic cost
information. The heuristic cost value in A* is used for effectiveness
and efficiency in searching solutions. A* is often used to find the
shortest path in the graph or the available map. Other than finding the
shortest route, A* is usually used in scheduling3, ship path planning4,
mobile robot5, robotic fish6, parking guidance system7, UAV path
planning8, road network path planning9, autonomous land vehicle10.
A* is a searching algorithm for the graph which contains cost
information known to the user. A* has the intention to search the
shortest route from one place to another place. In each looping
iteration, A* has to decide which path has the least cost to explore. A*
tries to minimize the searching cost which is written in the formula:
f(n) = g(n) + h(n).11,12 F(n) is the total cost that has to be considered
for every node or place being explored. G(n) is the cost calculated
from the origin to the current place (n). H(n) is the heuristic cost
calculated from the current place to the destination. The usage of the
heuristic cost function makes A* and Dijkstra different.13 Typically, the
implementation of A* is using Priority Queue for its data structure.
Priority Queue is a data structure that maintains that that queue's
head node is always at a minimum. A* Algorithm uses two kinds of
the data structure for its storage purpose. These two data structures

*Corresponding Author: Charisma Tubagus Setyobudhi,
Department of Computer Science, Faculty of Technology and Engineering,
Diponegoro University,Jl. Prof. Soedharto SH, Tembalang, Semarang-Indonesia.

are the Open Set and Closed Set. Open Set can use a priority queue
which has already been explained before, and open Set has the Set
of nodes that the algorithm has not explored. Meanwhile, Closed Set
is the data structure in which has the Set of nodes has been explored.
In general, the calculation of the heuristic of A* is various. However,
the one method used frequently in calculating heuristic is the
Euclidean Distance or Manhattan Distance. The pre-requisite of the
heuristic function being used in calculating f(n) cost is admissible. The
admissible heuristic means that the heuristic cost function never
overestimates the actual cost. Some of the development of the A*
algorithm is TPA*(Turning Point A*)14, D*15, Time-Efficient A*16,
IDA*17.Typically, A* can be implemented using a grid system,
navigational mesh18, or maze19 On the other hand, the greedy
algorithm uses a similar method compared to A*. It is slightly different
from A* because the greedy algorithm only uses a heuristic cost
function. So the cost function can be formulated : f(n) = h(n)document
is a template.

RESEARCH METHOD

The application for solving Puzzles is made to find the solution to that
puzzle problem. In the more extensive view of this problem, this
program is made by using several steps. The steps are (1) generating
the problem by reading input from text file, (2) the usage of A* and
Greedy Best First Search for finding the solution, (3) the visualization
of step by step solution by using OpenGL library.

To read the initial state of the problem in Fifteen Puzzle, there is a
need for a text file that can be modified easily by a text editor. One
instance of that text file for Puzzle's problem can be depicted below::

1 2 4 8
6 9 3 12
5 11 7 0
13 10 14 15

We can easily read the text file using the file input/output library,
which C++ already provides.

Below is the pseudo code for finding a solution using the A* algorithm
or Greedy Best First Search (Table 1).

Table1. Solution Finder Psedocode

void FindSolution(Pstate *initial, Pstate *goal){
 if (!mInitStartGoal){
 clearOpenList();
 clearClosedList();
 clearPathToGoal();
 }
 SetStartAndGoal(initial, goal);
 else{
 ContinueFindPath();
 }
}

The searching algorithm which is being used uses iteration as the
primary process. This continuously checks the state of the puzzle
whether it has reached the goal state or not yet. If the goal state has
not been reached, the search for a solution must continue. Both A*
and Greedy Best First Search start the search process by setting the
initial and goal states. This can be depicted by looking at the below
pseudo code.

Table 2. Main Program Pseudocode

PState *initial = new PState(true);
 PState *goal = new PState(false);
 for (int i = 0 ; i < BOARD_W; i++)
 for(int j = 0 ; j < BOARD_H; j++)
 goal->m_CurrentState[i][j] = g_GoalState[i][j];
 astar->FindSolution(initial, goal);

//Run AStar
while (astar->m_foundGoal == false && astar->getOpenListSize() >0)
{
 if (astar->iteration > MAXITERATION)
 break;
 astar->ContinueFind();
}

Below is the pseudo code for calculating the heuristic cost for the A*
algorithm and Greedy Best First Search (Table 2).

Table 3. Heuristic Computation Pseudo code

void ComputeHeuristic() {
 //calculate Heuristic based on the wrong position
 H = 0;
 for(int I = 0 ; I < BOARD_W; i++)
 for (int j = 0 ; j < BOARD_H; j++)
 if (m_CurrentState[i][j] != g_GoalState[i][j])
 H++;
 F = G + H;
 }

To calculate the heuristic value, we use the computation method of
using its positions that are different from the goal state. If the position
of the puzzle piece is not the same as the goal state, the heuristic
value will be incremented. In implementing A* and Greedy
Search, there are several components whit that come the central core
of that algorithm. These components are described in the form below
classes:

PState(Puzzle State)

PState is one component that has a function to store the puzzle state
data. This PState stores the states by using a 2D array of matrices for
storing the number in the puzzle pieces.

International Journal of Innovation Scientific Research and Review

The searching algorithm which is being used uses iteration as the
checks the state of the puzzle

whether it has reached the goal state or not yet. If the goal state has
not been reached, the search for a solution must continue. Both A*
and Greedy Best First Search start the search process by setting the

states. This can be depicted by looking at the below

>m_CurrentState[i][j] = g_GoalState[i][j];

>getOpenListSize() >0)

Below is the pseudo code for calculating the heuristic cost for the A*
algorithm and Greedy Best First Search (Table 2).

//calculate Heuristic based on the wrong position

if (m_CurrentState[i][j] != g_GoalState[i][j])

the heuristic value, we use the computation method of
using its positions that are different from the goal state. If the position
of the puzzle piece is not the same as the goal state, the heuristic

In implementing A* and Greedy Best First
come the central core

of that algorithm. These components are described in the form below

PState is one component that has a function to store the puzzle state
This PState stores the states by using a 2D array of matrices for

AStar

AStar is one component acting as the main motor engine for the A*
algorithm and Greedy Best First Search. In the AStar component,
several functions or methods have the task of running the algorithm.

OGL

OGL component is the component for drawing the PState using the
OpenGL library.

Main

The Main class is the main component for the program in which the
program is run the first time. This
program to run these components can be illustrated by looking at the
below diagram.

Figure 1. Program Component Classes

RESULT AND DISCUSSION

Below is the result of the testing of A*/Greedy Fifteen Puzzle:

Figure 2. Initial State of Fifteen Puzzle

Figure 3. Goal State of Fifteen Puzzle

In figure 1, the initial state is the puzzle state which has been
scrambled by reading the txt input file as described in the research
method. Meanwhile, in figure 2, the goal
puzzle having the number is in place (ordered)
the searching solution step by step by using the A* algorithm(Table 4)

Table 4. A* Algorithm Step by Step Solution Result

Step Puzzle State

1 1 2 4 8
6 9 3 12
5 11 7 0
13 10 14 15

2 1 2 4 8
6 9 3 0
5 11 7 12
13 10 14 15

International Journal of Innovation Scientific Research and Review, Vol. 04, Issue 07, pp.3094-3097 July, 2022 30

AStar is one component acting as the main motor engine for the A*
algorithm and Greedy Best First Search. In the AStar component,

tions or methods have the task of running the algorithm.

OGL component is the component for drawing the PState using the

The Main class is the main component for the program in which the
program is run the first time. This class is the entry point for the
program to run these components can be illustrated by looking at the

. Program Component Classes

RESULT AND DISCUSSION

Below is the result of the testing of A*/Greedy Fifteen Puzzle:

Initial State of Fifteen Puzzle

Goal State of Fifteen Puzzle

In figure 1, the initial state is the puzzle state which has been
scrambled by reading the txt input file as described in the research
method. Meanwhile, in figure 2, the goal state is the state of the
puzzle having the number is in place (ordered) Below is the result of
the searching solution step by step by using the A* algorithm(Table 4)

A* Algorithm Step by Step Solution Result

Cost

F = 13 G = 0 H = 13

F = 13 G = 1 H = 12

2 3095

3 1 2 4 0
6 9 3 8
5 11 7 12
13 10 14 15

F = 13 G = 2 H = 11

4 1 2 0 4
6 9 3 8
5 11 7 12
13 10 14 15

F = 13 G = 3 H = 10

5 1 2 3 4
6 9 0 8
5 11 7 12
13 10 14 15

F = 13 G = 4 H = 9

6 1 2 3 4
6 9 7 8
5 11 0 12
13 10 14 15

F = 13 G = 5 H = 8

7 1 2 3 4
6 9 7 8
5 0 11 12
13 10 14 15

F = 13 G = 6 H = 7

8 1 2 3 4
6 0 7 8
5 9 11 12
13 10 14 15

F = 14 G = 7 H = 7

9 1 2 3 4
0 6 7 8
5 9 11 12
13 10 14 15

F = 14 G = 8 H = 6

10 1 2 3 4
5 6 7 8
0 9 11 12
13 10 14 15

F = 14 G = 9 H = 5

11 1 2 3 4
5 6 7 8
9 0 11 12
13 10 14 15

F = 14 G = 10 H = 4

12 1 2 3 4
5 6 7 8
9 10 11 12
13 0 14 15

F = 14 G = 11 H = 3

13 1 2 3 4
5 6 7 8
9 10 11 12
13 14 0 15

F = 14 G = 12 H = 2

14 1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 0

F = 13 G = 13 H = 0

In the second column of the above table, is the position or state of the
puzzle pieces. The third Colum has the calculation of the F, G and H
cost. By looking at the table, we can conclude that the algorithm can
find the solution which we want. Below is the result of the searching
solution step by step by using the Greedy Best First Search algorithm
(Table 5)

Table 5. Greedy Best-Search Algorithm Step by Step Solution Result

Step Puzzle State Cost

1 1 2 4 8
6 9 3 12
5 11 7 0
13 10 14 15

F = 13 G = 0 H = 13

2 1 2 4 8
6 9 3 0
5 11 7 12
13 10 14 15

F = 12 G = 0 H = 12

3 1 2 4 0
6 9 3 8
5 11 7 12
13 10 14 15

F = 11 G = 0 H = 11

4 1 2 0 4
6 9 3 8
5 11 7 12
13 10 14 15

F = 10 G = 0 H = 10

5 1 2 3 4
6 9 0 8
5 11 7 12
13 10 14 15

F = 9 G = 0 H = 9

6 1 2 3 4
6 9 7 8
5 11 0 12
13 10 14 15

F = 8 G = 0 H = 8

7 1 2 3 4
6 9 7 8
5 0 11 12
13 10 14 15

F = 7 G = 0 H = 7

8 1 2 3 4
6 0 7 8
5 9 11 12
13 10 14 15

F = 7 G = 0 H = 7

9 1 2 3 4
0 6 7 8
5 9 11 12
13 10 14 15

F = 6 G = 0 H = 6

10 1 2 3 4
5 6 7 8
0 9 11 12
13 10 14 15

F = 5 G = 0 H = 5

11 1 2 3 4
5 6 7 8
9 0 11 12
13 10 14 15

F = 4 G = 0 H = 4

12 1 2 3 4
5 6 7 8
9 10 11 12
13 0 14 15

F = 3 G = 0 H = 3

13 2 3 4
5 6 7 8
9 10 11 12
13 14 0 15

F = 2 G = 0 H = 2

14 1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 0

F = 0 G = 0 H = 0

In the second column of the above table, is the position or state of the
puzzle pieces. The third column has the calculation of the F, G and H
cost. By looking at the table, we can conclude that the algorithm can
find the solution which we want. Here we have the comparison table
of the number iteration being used for both A* and Greedy Best First
Search algorithms (Table 6)

Table 6. Number of iterations used

Algorithm Used Number of Iterations

A* 35

Greedy Best First Search 22

CONCLUSION

From the result of this research, we can make some conclusions that
both A* Algorithm and Greedy Best First Search can solve or find the
solution for Fifteen Puzzle. In finding a solution, the A* algorithm has

International Journal of Innovation Scientific Research and Review, Vol. 04, Issue 07, pp.3094-3097 July, 2022 3096

a different approach or method for finding a solution. A* uses g(n) and
h(n). Meanwhile, Greedy Best First Search uses only h(n). In terms of
performance, these two algorithms perform differently. Greedy Best
First Search can find the solution much faster than A* because of
neglecting the g(n) cost. Greedy Best First Search can outperform A*
by ~37% faster (number of iterations of Greedy is 22. Meanwhile, A*
is 36). This might happen because A* has search space more
significant than the Greedy Best First Search because of including the
g(n) cost

Acknowledgements

The author did not receive any funding for this study.

Competing interests

There is no competing interest.

REFERENCES

1. Li XM, Wang JP, Ning X. A* Algorithm Based Robot Path

Planning Method. AMM 2011;63–64:686–9.
https://doi.org/10.4028/www.scientific.net/amm.63-64.686.

2. K. Ping and L. Shuai, "A brief introduction of an improved A
search algorithm," 2013 10th International Computer
Conference on Wavelet Active Media Technology and
Information Processing (ICCWAMTIP), 2013, pp. 146-148, doi:
10.1109/ICCWAMTIP.2013.6716619.

3. Yang ZX, Ren XB, Song JT, Wang WL. Schedule Study and
Simulation Experiment of Lift-Sliding Stereo Garage Based on
A* Algorithm. AMM 2011;109:523–7.
https://doi.org/10.4028/www.scientific.net/amm.109.523

4. Yang ZX, Ren XB, Song JT, Wang WL. Schedule Study and
Simulation Experiment of Lift-Sliding Stereo Garage Based on
A* Algorithm. AMM 2011;109:523–7.
https://doi.org/10.4028/www.scientific.net/amm.109.523.

5. Duchoň F, Huňady D, Dekan M, Babinec A. Optimal Navigation
for Mobile Robot in Known Environment. AMM 2013;282:33–8.
https://doi.org/10.4028/www.scientific.net/amm.282.33.

6. Wang H, Jiang YL. Robotic Fish Path Planning Based on an
Improved A* Algorithm. AMM 2013;336–338:968–72.
https://doi.org/10.4028/www.scientific.net/amm.336-338.968

7. Cheng LP, Yan B, Tan YH. Application of CAN Bus and the
Layered A* Algorithm in the Parking Guidance System. AMM
2014;602–605:887–90.
https://doi.org/10.4028/www.scientific.net/amm.602-605.887

8. Chen X, Chen XM, Zhang J. The Dynamic Path Planning of
UAV Based on A* Algorithm. AMM 2014;494–495:1094–7.
https://doi.org/10.4028/www.scientific.net/amm.494-495.1094

9. Sharma KS, Pal BL. Shortest Path Searching for Road Network
Using A* Algorithm. International Journal of Computer Science
and Mobile Computing.2015:7:513-522.

10. Erke S, Bin D, Yiming N, Qi Z, Liang X, Dawei Z. An improved
A-Star based path planning algorithm for autonomous land
vehicles. International Journal of Advanced Robotic Systems.
September 2020. doi:10.1177/1729881420962263

11. Zhao ZQ, Liu ZH, Hao JX. Path Planning for Ground Simulation
Objiect Based on A* Algorithm. AMM 2012;229–231:2019–24.
https://doi.org/10.4028/www.scientific.net/amm.229-231.2019.

12. X. He, Y. Wang and Y. Cao, "Researching on AI path-finding
algorithm in the game development," 2012 International
Symposium on Instrumentation & Measurement, Sensor
Network and Automation (IMSNA), 2012, pp. 484-486, doi:
10.1109/MSNA.2012.6324627.

13. Zhang Z and Zhao Z. A multiple mobile robots path planning
algorithm based on a-star and dijkstra algorithm. Int. Journal of
Smart Home. 2014:8:75-86.

14. Wang H, Piao Y. Research on Optimal Path Finding Algorithm.
AMM 2013;427–429:1883–7.
https://doi.org/10.4028/www.scientific.net/amm.427-429.1883.

15. Sudhagar K, Subramanian MB, Rajarajeswari G. Path Planning
of Mobile Robot Agent Using Heuristic Based Integrated Hybrid
Algorithm. AMR 2014;984–985:1229–34.
https://doi.org/10.4028/www.scientific.net/amr.984-985.1229.

16. Guruji AK, Agarwal H, Prasediya DK. Time Efficient A*
Algorithm for Robot Path Planning”. 3rd International
Conference on Innovations in Automation and Mechatronics
Engineering ICIAME 2016. 2016

17. Primanita A,Effendi R and Hidayat W.Comparison of A and
Iterative Deepening A algorithms for non-player character in
Role Playing Game. International Conference on Electrical
Engineering and Computer Science (ICECOS). 2017:202-205.
doi: 10.1109/ICECOS.2017.8167134.

18. Zhang YY, Shen YC, Ma LN. Pathfinding Algorithm of 3D Scene
Based on Navigation Mesh. AMR 2014;1030–1032:1745–50.
https://doi.org/10.4028/www.scientific.net/amr.1030-1032.1745.

19. Karova M, Penev I, Kalcheva N. Comparative analysis of
Algorithms to search the Shortest Path in a Maze”. 2016 IEEE
International Black Sea Conference on Communications and
Networking (BlackSeaCom). 2016

International Journal of Innovation Scientific Research and Review, Vol. 04, Issue 07, pp.3094-3097 July, 2022 3097

